Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/29610
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDhiman, G.-
dc.contributor.authorSingh, KK.-
dc.contributor.authorSlowik, A.-
dc.contributor.authorChang, V.-
dc.contributor.authorKaur, A.-
dc.contributor.authorGarg, M.-
dc.date.accessioned2022-11-29T05:47:47Z-
dc.date.available2022-11-29T05:47:47Z-
dc.date.issued2020-08-20-
dc.identifier.citationDhiman, G. vd. (2020). "EMoSOA: A new evolutionary multi-objective seagull optimization algorithm for global optimization." International Journal of Machine Learning and Cybernetics, 12(2), 571-596.en_US
dc.identifier.issn1868-8071-
dc.identifier.urihttps://doi.org/10.1007/s13042-020-01189-1-
dc.identifier.urihttps://link.springer.com/article/10.1007/s13042-020-01189-1-
dc.identifier.urihttp://hdl.handle.net/11452/29610-
dc.description.abstractThis study introduces the evolutionary multi-objective version of seagull optimization algorithm (SOA), entitled Evolutionary Multi-objective Seagull Optimization Algorithm (EMoSOA). In this algorithm, a dynamic archive concept, grid mechanism, leader selection, and genetic operators are employed with the capability to cache the solutions from the non-dominatedPareto. The roulette-wheel method is employed to find the appropriate archived solutions. The proposed algorithm is tested and compared with state-of-the-art metaheuristic algorithms over twenty-four standard benchmark test functions. Four real-world engineering design problems are validated using proposedEMoSOAalgorithm to determine its adequacy. The findings of empirical research indicate that the proposed algorithm is better than other algorithms. It also takes into account those optimal solutions from theParetowhich shows high convergence.en_US
dc.description.sponsorshipVC Researchtr_TR
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSeagull optimization algorithmen_US
dc.subjectMulti-objective optimizationen_US
dc.subjectEvolutionaryen_US
dc.subjectParetoen_US
dc.subjectEngineering design problemsen_US
dc.subjectConvergenceen_US
dc.subjectDiversityen_US
dc.subjectSpotted hyena optimizeren_US
dc.subjectComputational intelligenceen_US
dc.subjectDesign optimizationen_US
dc.subjectPlacementen_US
dc.subjectModelen_US
dc.subjectCosten_US
dc.subjectBenchmarkingen_US
dc.subjectGlobal optimizationen_US
dc.subjectMultiobjective optimizationen_US
dc.subjectEmpirical researchen_US
dc.subjectEngineering design problemsen_US
dc.subjectEvolutionary multi-objectivesen_US
dc.subjectGenetic operatorsen_US
dc.subjectMeta heuristic algorithmen_US
dc.subjectOptimal solutionsen_US
dc.subjectOptimization algorithmsen_US
dc.subjectState of the arten_US
dc.subjectComputer scienceen_US
dc.titleEMoSOA: A new evolutionary multi-objective seagull optimization algorithm for global optimizationen_US
dc.typeArticleen_US
dc.identifier.wos000567736400001tr_TR
dc.identifier.scopus2-s2.0-85090778250tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentBursa Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği.tr_TR
dc.identifier.startpage571tr_TR
dc.identifier.endpage596tr_TR
dc.identifier.volume12tr_TR
dc.identifier.issue2tr_TR
dc.relation.journalInternational Journal of Machine Learning and Cyberneticsen_US
dc.contributor.buuauthorYıldız, Ali Rıza-
dc.contributor.researcheridF-7426-2011tr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.relation.collaborationSanayitr_TR
dc.subject.wosComputer science, artificial intelligenceen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ2en_US
dc.contributor.scopusid7102365439tr_TR
dc.subject.scopusDecomposition; Evolutionary Multiobjective Optimization; Pareto Fronten_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.