Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/29678
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Çiçek, Ahmet | - |
dc.contributor.author | Uluğ, Bülent | - |
dc.contributor.author | Vaz, Pedro D. | - |
dc.date.accessioned | 2022-12-06T05:20:57Z | - |
dc.date.available | 2022-12-06T05:20:57Z | - |
dc.date.issued | 2016-06-30 | - |
dc.identifier.citation | Akbal, A. vd. (2016). "Relation between silver nanoparticle formation rate and antioxidant capacity of aqueous plant leaf extracts". ed. Vaz, P. D. Journal of Spectroscopy, 2016. | en_US |
dc.identifier.issn | 2314-4920 | - |
dc.identifier.issn | 2314-4939 | - |
dc.identifier.uri | https://doi.org/10.1155/2016/4083421 | - |
dc.identifier.uri | https://www.hindawi.com/journals/jspec/2016/4083421/ | - |
dc.identifier.uri | http://hdl.handle.net/11452/29678 | - |
dc.description.abstract | Correlation between the antioxidant capacity and silver nanoparticle formation rates of pomegranate (Punica granatum), quince (Cydonia oblonga), chestnut (Castanea sativa), fig (Ficus carica), walnut (Juglans cinerea), black mulberry (Morus nigra), and white mulberry (Morus alba) leaf extracts is investigated at a fixed illumination. Silver nanoparticles formed in all plant leaf extracts possess round shapes with average particle size of 15 to 25 nm, whereas corresponding surface plasmon resonance peak wavelengths vary between 422nm and 451 nm. Cupric reducing antioxidant capacity technique is used as a reference method to determine total antioxidant capacity of the plant leaf extracts. Integrated absorbance over the plasmon resonance peaks exhibits better linear relation with antioxidant capacities of various plant leaf extracts compared to peak absorbance values, with correlation coefficient values of 0.9333 and 0.7221, respectively. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Hindawi | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Atıf Gayri Ticari Türetilemez 4.0 Uluslararası | tr_TR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Biochemistry & molecular biology | en_US |
dc.subject | Spectroscopy | en_US |
dc.subject | Green synthesis | en_US |
dc.subject | Extracellular synthesis | en_US |
dc.subject | Mediated synthesis | en_US |
dc.subject | Biosynthesis | en_US |
dc.subject | Assays | en_US |
dc.subject | Antioxidants | en_US |
dc.subject | Metal nanoparticles | en_US |
dc.subject | Nanoparticles | en_US |
dc.subject | Particle size | en_US |
dc.subject | Plant extracts | en_US |
dc.subject | Plants (botany) | en_US |
dc.subject | Plasmons | en_US |
dc.subject | Surface plasmon resonance | en_US |
dc.subject | Absorbance values | en_US |
dc.subject | Antioxidant capacity | en_US |
dc.subject | Average particle size | en_US |
dc.subject | Correlation coefficient | en_US |
dc.subject | Plasmon resonances | en_US |
dc.subject | Reference method | en_US |
dc.subject | Silver nanoparticles | en_US |
dc.subject | Total antioxidant capacity | en_US |
dc.subject | Silver | en_US |
dc.title | Relation between silver nanoparticle formation rate and antioxidant capacity of aqueous plant leaf extracts | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000381761200001 | tr_TR |
dc.identifier.scopus | 2-s2.0-84984973448 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Kimya Bölümü. | tr_TR |
dc.identifier.volume | 2016 | tr_TR |
dc.relation.journal | Journal of Spectroscopy | en_US |
dc.contributor.buuauthor | Akbal, Azat | - |
dc.contributor.buuauthor | Türkdemir, Mehmet Haluk | - |
dc.contributor.researcherid | AAH-5425-2021 | tr_TR |
dc.relation.collaboration | Yurt içi | tr_TR |
dc.subject.wos | Biochemical research methods | en_US |
dc.subject.wos | Spectroscopy | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q4 | en_US |
dc.contributor.scopusid | 57190980906 | tr_TR |
dc.contributor.scopusid | 7801560416 | tr_TR |
dc.subject.scopus | Silver Nanoparticles; Green Synthesis; Biofabrication | en_US |
dc.subject.emtree | Antioxidant | en_US |
dc.subject.emtree | Castanea sativa extract | en_US |
dc.subject.emtree | Cydonia oblonga extract | en_US |
dc.subject.emtree | Ficus carica extract | en_US |
dc.subject.emtree | Juglans cinerea extract | en_US |
dc.subject.emtree | Morus nigra extract | en_US |
dc.subject.emtree | Mulberry extract | en_US |
dc.subject.emtree | Plant extract | en_US |
dc.subject.emtree | Pomegranate extract | en_US |
dc.subject.emtree | Silver nanoparticle | en_US |
dc.subject.emtree | Unclassified drug | en_US |
dc.subject.emtree | Anisotropy | en_US |
dc.subject.emtree | Antioxidant activity | en_US |
dc.subject.emtree | Article | en_US |
dc.subject.emtree | Castanea sativa | en_US |
dc.subject.emtree | Controlled study | en_US |
dc.subject.emtree | Correlation coefficient | en_US |
dc.subject.emtree | Correlational study | en_US |
dc.subject.emtree | Fig | en_US |
dc.subject.emtree | Illumination | en_US |
dc.subject.emtree | Juglans cinerea | en_US |
dc.subject.emtree | Morus alba | en_US |
dc.subject.emtree | Morus nigra | en_US |
dc.subject.emtree | Nonhuman | en_US |
dc.subject.emtree | Particle size | en_US |
dc.subject.emtree | Plant leaf | en_US |
dc.subject.emtree | Quince | en_US |
dc.subject.emtree | Surface plasmon resonance | en_US |
dc.subject.emtree | Transmission electron microscopy | en_US |
dc.subject.emtree | Walnut | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Akbal_vd_2016.pdf | 2.21 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License