Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/29731
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2022-12-07T12:08:28Z-
dc.date.available2022-12-07T12:08:28Z-
dc.date.issued2019-05-
dc.identifier.citationÖzcan, N. (2019). ''Stability analysis of Cohen-Grossberg neural networks of neutral-type: Multiple delays case''. Neural Networks, 113, 20-27.en_US
dc.identifier.issn0893-6080-
dc.identifier.issn1879-2782-
dc.identifier.urihttps://doi.org/10.1016/j.neunet.2019.01.017-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0893608019300310-
dc.identifier.urihttp://hdl.handle.net/11452/29731-
dc.description.abstractThe essential purpose of this work is to conduct an investigation into stability problem for the class of neutral-type Cohen-Grossberg neural networks including multiple time delays in states and multiple neutral delays in time derivative of states. By proposing an appropriate Lyapunov functional, a new sufficient criterion is derived for global asymptotic stability of neutral-type neural networks. The obtained stability criterion is independent of time delay and neutral delay parameters, and it is completely stated in terms of the elements of interconnection matrices and other network parameters. Thus, this newly presented stability condition can be validated by simply examining some algebraic equations establishing some relationships among the system parameters and matrices of the neutral-type neural system. A constructive example is presented to indicate applicability of the obtained sufficient stability condition. Since stability analysis of the class of neutral-type neural networks considered in this work has not been given much attention due to the difficulty of developing efficient mathematical techniques and methods enabling to conduct a stability analysis of such neutral-type neural systems, the criterion proposed in this paper can be considered as a leading stability result for neutral-type Cohen-Grossberg neural systems including multiple time and multiple neutral delays.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDelayed neutral systemsen_US
dc.subjectNeural networksen_US
dc.subjectStability analysisen_US
dc.subjectLyapunov functionalsen_US
dc.subjectTime-varying delayen_US
dc.subjectRobust exponential stabilityen_US
dc.subjectOutput-feedback controlen_US
dc.subjectDependent stabilityen_US
dc.subjectStochastic stabilityen_US
dc.subjectDistributed delaysen_US
dc.subjectGlobal stabilityen_US
dc.subjectCriteriaen_US
dc.subjectSystemsen_US
dc.subjectDiscreteen_US
dc.subjectAsymptotic stabilityen_US
dc.subjectLyapunov functionsen_US
dc.subjectMatrix algebraen_US
dc.subjectNeural networksen_US
dc.subjectStability criteriaen_US
dc.subjectTime delayen_US
dc.subjectGlobal asymptotic stabilityen_US
dc.subjectInterconnection matricesen_US
dc.subjectLyapunov functionalsen_US
dc.subjectNeutral systemsen_US
dc.subjectNeutral-type neural networksen_US
dc.subjectStability conditionen_US
dc.subjectSufficient criterionen_US
dc.subjectSystem stabilityen_US
dc.subjectComputer scienceen_US
dc.subjectNeurosciences & neurologyen_US
dc.subject.meshAlgorithmsen_US
dc.subject.meshComputer simulationen_US
dc.subject.meshModels, theoreticalen_US
dc.subject.meshNeural networks (computer)en_US
dc.subject.meshTime factorsen_US
dc.titleStability analysis of Cohen-Grossberg neural networks of neutral-type: Multiple delays caseen_US
dc.typeArticleen_US
dc.identifier.wos000461899900003tr_TR
dc.identifier.scopus2-s2.0-85061523658tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentBursa Uludağ üniversitesi/Mühendislik Fakültesi/Elektrik-Elektronik Mühendisliği Bölümü.tr_TR
dc.identifier.startpage20tr_TR
dc.identifier.endpage27tr_TR
dc.identifier.volume113tr_TR
dc.relation.journalNeural Networksen_US
dc.contributor.buuauthorÖzcan, Neyir-
dc.identifier.pubmed30776673tr_TR
dc.subject.wosComputer science, artificial intelligenceen_US
dc.subject.wosNeurosciencesen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.indexed.pubmedPubMeden_US
dc.wos.quartileQ1en_US
dc.contributor.scopusid7003726676tr_TR
dc.subject.scopusBAM Neural Network; Time Lag; Bidirectional Associative Memoryen_US
dc.subject.emtreeArticleen_US
dc.subject.emtreeAttentionen_US
dc.subject.emtreeAlgorithmen_US
dc.subject.emtreeArtificial neural networken_US
dc.subject.emtreeComputer simulationen_US
dc.subject.emtreeTheoretical modelen_US
dc.subject.emtreeTime factoren_US
Appears in Collections:PubMed
Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.