Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://hdl.handle.net/11452/29736
Tüm üstveri kaydı
Dublin Core AlanıDeğerDil
dc.date.accessioned2022-12-07T12:41:05Z-
dc.date.available2022-12-07T12:41:05Z-
dc.date.issued2016-07-06-
dc.identifier.citationYılmaz, E. (2016). "Fetal state assessment from cardiotocogram data using artificial neural networks". Journal of Medical and Biological Engineering, 36(6), Special Issue, 820-832.en_US
dc.identifier.issn1609-0985-
dc.identifier.issn2199-4757-
dc.identifier.urihttps://doi.org/10.1007/s40846-016-0191-3-
dc.identifier.urihttps://link.springer.com/article/10.1007/s40846-016-0191-3-
dc.identifier.urihttp://hdl.handle.net/11452/29736-
dc.description.abstractCardiotocography is the most widely used method in obstetrics practice for monitoring fetal health status. The main goal of monitoring is early detection of fetal hypoxia. A cardiotocogram is a recording of fetal heart rate and uterine activity signals. The accurate analysis of cardiotocograms is critical for further treatment. Therefore, fetal state assessment using machine learning methods from cardiotocogram data has received significant attention in the literature. In this paper, a comparative study of fetal state assessment is presented by using three artificial neural network models, namely the multilayer perceptron neural network, probabilistic neural network, and generalized regression neural network. The performances of the models are evaluated using publicly available cardiotocogram data by running a tenfold cross-validation procedure. The models' performances are compared in terms of overall classification accuracy. For further analysis, receiver operation characteristic analysis and the cobweb representation technique are used.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEngineeringen_US
dc.subjectCardiotocogramen_US
dc.subjectFetal state assessmenten_US
dc.subjectClinical decision support systemen_US
dc.subjectArtificial neural networken_US
dc.subjectFeedforward networksen_US
dc.subjectClassificationen_US
dc.subjectPerformanceen_US
dc.subjectArtificial intelligenceen_US
dc.subjectDecision support systemsen_US
dc.subjectFetal monitoringen_US
dc.subjectLearning systemsen_US
dc.subjectArtificial neural network modelsen_US
dc.subjectCardiotocogramen_US
dc.subjectClinical decision support systemsen_US
dc.subjectGeneralized regression neural networksen_US
dc.subjectMulti-layer perceptron neural networksen_US
dc.subjectProbabilistic neural networksen_US
dc.subjectRepresentation techniquesen_US
dc.subjectState assessmenten_US
dc.subjectNeural networksen_US
dc.titleFetal state assessment from cardiotocogram data using artificial neural networksen_US
dc.typeArticletr_TR
dc.identifier.wos000392085100008tr_TR
dc.identifier.scopus2-s2.0-85008466039tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Elektrik-Elektronik Mühendisliği Bölümü.tr_TR
dc.identifier.startpage820tr_TR
dc.identifier.endpage832tr_TR
dc.identifier.volume36tr_TR
dc.identifier.issue6, Special Issueen_US
dc.relation.journalJournal of Medical and Biological Engineeringen_US
dc.contributor.buuauthorYılmaz, Ersen-
dc.contributor.researcheridG-3554-2013tr_TR
dc.subject.wosEngineering, biomedicalen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ4en_US
dc.contributor.scopusid56965095300tr_TR
dc.subject.scopusCardiotocography; Fetal Heart Rate; Pregnancyen_US
dc.subject.emtreeArtificial neural networken_US
dc.subject.emtreeAttentionen_US
dc.subject.emtreeClassificationen_US
dc.subject.emtreeClinical decision support systemen_US
dc.subject.emtreeComparative studyen_US
dc.subject.emtreeFetusen_US
dc.subject.emtreeHumanen_US
dc.subject.emtreeNervous systemen_US
dc.subject.emtreePerceptronen_US
dc.subject.emtreeRunningen_US
dc.subject.emtreeValidation processen_US
Koleksiyonlarda Görünür:Scopus
Web of Science

Bu öğenin dosyaları:
Bu öğeyle ilişkili dosya bulunmamaktadır.


DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.