Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/29757
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Anılan, Tuğçe | - |
dc.contributor.author | Nacar, Sinan | - |
dc.contributor.author | Yüksek, Ömer | - |
dc.date.accessioned | 2022-12-08T11:12:31Z | - |
dc.date.available | 2022-12-08T11:12:31Z | - |
dc.date.issued | 2020-04-10 | - |
dc.identifier.citation | Anılan, T. vd. (2020). "Prediction of maximum annual flood discharges using artificial neural network approaches". Gradevinar, 72(3), 215-224. | en_US |
dc.identifier.issn | 0350-2465 | - |
dc.identifier.uri | https://doi.org/10.14256/JCE.2316.2018 | - |
dc.identifier.uri | http://www.casopis-gradjevinar.hr/archive/article/2316 | - |
dc.identifier.uri | http://hdl.handle.net/11452/29757 | - |
dc.description.abstract | The applicability of artificial neural network (ANN) approaches for estimation of maximum annual flows is investigated in the paper. The performance of three neural network models is compared: multi layer perceptron neural networks (MLP_NN), generalized feed forward neural networks (GFF_NN), and principal component analysis with neural networks (PCA_ NN). The proposed approaches were applied to 33 stream-gauging stations. It was found that the optimal 3-hidden layered PCA_NN method was more appropriate than the optimal MLP_NN and GFF_NN models for the estimation of maximum annual flows. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Croatian Society of Civil Engineers | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Atıf Gayri Ticari Türetilemez 4.0 Uluslararası | tr_TR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Artificial neural networks | en_US |
dc.subject | Principal component analysis | en_US |
dc.subject | Maximum annual flows | en_US |
dc.subject | L-moments approach | en_US |
dc.subject | Frequency-analysis | en_US |
dc.subject | Index-flood | en_US |
dc.subject | Feedforward networks | en_US |
dc.subject | Streamflow | en_US |
dc.subject | Basin | en_US |
dc.subject | Classification | en_US |
dc.subject | Rainfall | en_US |
dc.subject | Quality | en_US |
dc.subject | Engineering | en_US |
dc.title | Prediction of maximum annual flood discharges using artificial neural network approaches | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000534611200002 | tr_TR |
dc.identifier.scopus | 2-s2.0-85084148753 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği Bölümü. | tr_TR |
dc.contributor.orcid | 0000-0003-0897-4742 | tr_TR |
dc.identifier.startpage | 215 | tr_TR |
dc.identifier.endpage | 224 | tr_TR |
dc.identifier.volume | 72 | tr_TR |
dc.identifier.issue | 3 | tr_TR |
dc.relation.journal | Gradevinar | en_US |
dc.contributor.buuauthor | Kankal, Murat | - |
dc.contributor.researcherid | AAZ-6851-2020 | tr_TR |
dc.relation.collaboration | Yurt içi | tr_TR |
dc.subject.wos | Engineering, civil | tr_TR |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q4 | en_US |
dc.contributor.scopusid | 24471611900 | tr_TR |
dc.subject.scopus | Flood Frequency; L-Moment; Catchment Area (Hydrology) | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Kankal_vd_2020.pdf | 340.22 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License