Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/29757
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAnılan, Tuğçe-
dc.contributor.authorNacar, Sinan-
dc.contributor.authorYüksek, Ömer-
dc.date.accessioned2022-12-08T11:12:31Z-
dc.date.available2022-12-08T11:12:31Z-
dc.date.issued2020-04-10-
dc.identifier.citationAnılan, T. vd. (2020). "Prediction of maximum annual flood discharges using artificial neural network approaches". Gradevinar, 72(3), 215-224.en_US
dc.identifier.issn0350-2465-
dc.identifier.urihttps://doi.org/10.14256/JCE.2316.2018-
dc.identifier.urihttp://www.casopis-gradjevinar.hr/archive/article/2316-
dc.identifier.urihttp://hdl.handle.net/11452/29757-
dc.description.abstractThe applicability of artificial neural network (ANN) approaches for estimation of maximum annual flows is investigated in the paper. The performance of three neural network models is compared: multi layer perceptron neural networks (MLP_NN), generalized feed forward neural networks (GFF_NN), and principal component analysis with neural networks (PCA_ NN). The proposed approaches were applied to 33 stream-gauging stations. It was found that the optimal 3-hidden layered PCA_NN method was more appropriate than the optimal MLP_NN and GFF_NN models for the estimation of maximum annual flows.en_US
dc.language.isoenen_US
dc.publisherCroatian Society of Civil Engineersen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectArtificial neural networksen_US
dc.subjectPrincipal component analysisen_US
dc.subjectMaximum annual flowsen_US
dc.subjectL-moments approachen_US
dc.subjectFrequency-analysisen_US
dc.subjectIndex-flooden_US
dc.subjectFeedforward networksen_US
dc.subjectStreamflowen_US
dc.subjectBasinen_US
dc.subjectClassificationen_US
dc.subjectRainfallen_US
dc.subjectQualityen_US
dc.subjectEngineeringen_US
dc.titlePrediction of maximum annual flood discharges using artificial neural network approachesen_US
dc.typeArticleen_US
dc.identifier.wos000534611200002tr_TR
dc.identifier.scopus2-s2.0-85084148753tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentBursa Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0003-0897-4742tr_TR
dc.identifier.startpage215tr_TR
dc.identifier.endpage224tr_TR
dc.identifier.volume72tr_TR
dc.identifier.issue3tr_TR
dc.relation.journalGradevinaren_US
dc.contributor.buuauthorKankal, Murat-
dc.contributor.researcheridAAZ-6851-2020tr_TR
dc.relation.collaborationYurt içitr_TR
dc.subject.wosEngineering, civiltr_TR
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ4en_US
dc.contributor.scopusid24471611900tr_TR
dc.subject.scopusFlood Frequency; L-Moment; Catchment Area (Hydrology)en_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Kankal_vd_2020.pdf340.22 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons