Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız:
http://hdl.handle.net/11452/29783
Tüm üstveri kaydı
Dublin Core Alanı | Değer | Dil |
---|---|---|
dc.contributor.author | Ashyralyev, Allaberen | - |
dc.date.accessioned | 2022-12-09T06:50:41Z | - |
dc.date.available | 2022-12-09T06:50:41Z | - |
dc.date.issued | 2012-07-26 | - |
dc.identifier.citation | Ashyralyev, A. ve Öztürk, E. (2013). "On a difference scheme of fourth order of accuracy for the Bitsadze-Samarskii type nonlocal boundary value problem". Mathematical Methods in the Applied Sciences, 36(8), 936-955. | en_US |
dc.identifier.issn | 0170-4214 | - |
dc.identifier.issn | 1099-1476 | - |
dc.identifier.uri | https://doi.org/10.1002/mma.2650 | - |
dc.identifier.uri | https://onlinelibrary.wiley.com/doi/full/10.1002/mma.2650 | - |
dc.identifier.uri | http://hdl.handle.net/11452/29783 | - |
dc.description.abstract | The BitsadzeSamarskii type nonlocal boundary value problem d2u(t)dt2+Au(t)=f(t),0H is considered. Here, f(t) be a given abstract continuous function defined on [0,1] with values in H, phi and be the elements of D(A), and j are the numbers from the set [0,1]. The well-posedness of the problem in Holder spaces with a weight is established. The coercivity inequalities for the solution of the nonlocal boundary value problem for elliptic equations are obtained. The fourth order of accuracy difference scheme for approximate solution of the problem is presented. The well-posedness of this difference scheme in difference analogue of Holder spaces is established. For applications, the stability, the almost coercivity, and the coercivity estimates for the solutions of difference schemes for elliptic equations are obtained. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Wiley | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Mathematics | en_US |
dc.subject | Elliptic equation | en_US |
dc.subject | Bitsadze-Samarskii nonlocal boundary value problem | en_US |
dc.subject | Difference scheme | en_US |
dc.subject | Stability | en_US |
dc.subject | Well-posedness | en_US |
dc.subject | Elliptic-equations | en_US |
dc.subject | Spaces | en_US |
dc.subject | Coercive force | en_US |
dc.subject | Convergence of numerical methods | en_US |
dc.subject | Applied science | en_US |
dc.subject | Approximate solution | en_US |
dc.subject | Continuous functions | en_US |
dc.subject | Difference schemes | en_US |
dc.subject | Elliptic equations | en_US |
dc.subject | Mathematical method | en_US |
dc.subject | Nonlocal boundary-value problems | en_US |
dc.subject | Positive definite | en_US |
dc.subject | Boundary value problems | en_US |
dc.title | On a difference scheme of fourth order of accuracy for the Bitsadze-Samarskii type nonlocal boundary value problem | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000318181000006 | tr_TR |
dc.identifier.scopus | 2-s2.0-84876751333 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü. | tr_TR |
dc.identifier.startpage | 936 | tr_TR |
dc.identifier.endpage | 955 | tr_TR |
dc.identifier.volume | 36 | tr_TR |
dc.identifier.issue | 8 | tr_TR |
dc.relation.journal | Mathematical Methods in the Applied Sciences | en_US |
dc.contributor.buuauthor | Öztürk, Elif | - |
dc.relation.collaboration | Yurt içi | tr_TR |
dc.subject.wos | Mathematics, applied | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q2 | en_US |
dc.contributor.scopusid | 54403582400 | tr_TR |
dc.subject.scopus | Difference Scheme; Nonlocal Boundary Value Problems; Identification Problem | en_US |
Koleksiyonlarda Görünür: | Scopus Web of Science |
Bu öğenin dosyaları:
Bu öğeyle ilişkili dosya bulunmamaktadır.
DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.