Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/29783
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAshyralyev, Allaberen-
dc.date.accessioned2022-12-09T06:50:41Z-
dc.date.available2022-12-09T06:50:41Z-
dc.date.issued2012-07-26-
dc.identifier.citationAshyralyev, A. ve Öztürk, E. (2013). "On a difference scheme of fourth order of accuracy for the Bitsadze-Samarskii type nonlocal boundary value problem". Mathematical Methods in the Applied Sciences, 36(8), 936-955.en_US
dc.identifier.issn0170-4214-
dc.identifier.issn1099-1476-
dc.identifier.urihttps://doi.org/10.1002/mma.2650-
dc.identifier.urihttps://onlinelibrary.wiley.com/doi/full/10.1002/mma.2650-
dc.identifier.urihttp://hdl.handle.net/11452/29783-
dc.description.abstractThe BitsadzeSamarskii type nonlocal boundary value problem d2u(t)dt2+Au(t)=f(t),0H is considered. Here, f(t) be a given abstract continuous function defined on [0,1] with values in H, phi and be the elements of D(A), and j are the numbers from the set [0,1]. The well-posedness of the problem in Holder spaces with a weight is established. The coercivity inequalities for the solution of the nonlocal boundary value problem for elliptic equations are obtained. The fourth order of accuracy difference scheme for approximate solution of the problem is presented. The well-posedness of this difference scheme in difference analogue of Holder spaces is established. For applications, the stability, the almost coercivity, and the coercivity estimates for the solutions of difference schemes for elliptic equations are obtained.en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMathematicsen_US
dc.subjectElliptic equationen_US
dc.subjectBitsadze-Samarskii nonlocal boundary value problemen_US
dc.subjectDifference schemeen_US
dc.subjectStabilityen_US
dc.subjectWell-posednessen_US
dc.subjectElliptic-equationsen_US
dc.subjectSpacesen_US
dc.subjectCoercive forceen_US
dc.subjectConvergence of numerical methodsen_US
dc.subjectApplied scienceen_US
dc.subjectApproximate solutionen_US
dc.subjectContinuous functionsen_US
dc.subjectDifference schemesen_US
dc.subjectElliptic equationsen_US
dc.subjectMathematical methoden_US
dc.subjectNonlocal boundary-value problemsen_US
dc.subjectPositive definiteen_US
dc.subjectBoundary value problemsen_US
dc.titleOn a difference scheme of fourth order of accuracy for the Bitsadze-Samarskii type nonlocal boundary value problemen_US
dc.typeArticleen_US
dc.identifier.wos000318181000006tr_TR
dc.identifier.scopus2-s2.0-84876751333tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.tr_TR
dc.identifier.startpage936tr_TR
dc.identifier.endpage955tr_TR
dc.identifier.volume36tr_TR
dc.identifier.issue8tr_TR
dc.relation.journalMathematical Methods in the Applied Sciencesen_US
dc.contributor.buuauthorÖztürk, Elif-
dc.relation.collaborationYurt içitr_TR
dc.subject.wosMathematics, applieden_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ2en_US
dc.contributor.scopusid54403582400tr_TR
dc.subject.scopusDifference Scheme; Nonlocal Boundary Value Problems; Identification Problemen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.