Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/29912
Title: On the exponential diophantine equation (n-1)(x) + (n+2)(y) = n(z)
Authors: Bai, Hairong
Yuan, Pingzhi
Bursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.
0000-0002-6321-4132
Kızıldere, Elif
Soydan, Gökhan
57204173004
23566953200
Keywords: Exponential Diophantine equation
Primitive divisors of Lucas sequences
Jacobi symbol
Lower bounds for linear forms in two logarithms
Primitive divisors
Linear-forms
2 Logarithms
Conjecture
Number
Lucas
Mathematics
Issue Date: 30-Mar-2020
Publisher: Ars Polona-Ruch
Citation: Bai, H. vd. (2020). "On the exponential diophantine equation (n-1)(x) + (n+2)(y) = n(z)". Colloquium Mathematicum, 161(2), 239-249.
Abstract: Suppose that n is a positive integer. We show that the only positive integer solutions (n, x, y, z) of the exponential Diophantine equation (n - 1)(x) + (n + 2)(y) = nz, n >= 2, xyz not equal 0, are (3, 2, 1, 2), (3,1, 2, 3). The main tools in the proofs are Baker's theory and Bilu-Hanrot-Voutier's result on primitive divisors of Lucas numbers.
URI: https://doi.org/10.4064/cm7668-6-2019
https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/colloquium-mathematicum/all/161/2/113556/on-the-exponential-diophantine-equation-n-1-x-n-2-y-n-z
http://hdl.handle.net/11452/29912
ISSN: 0010-1354
1730-6302
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.