Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/29998
Title: | Optimum design of cam-roller follower mechanism using a new evolutionary algorithm |
Authors: | Hamza, Ferhat Abderazek, Hammoudi Lakhdar, Smata Ferhat, Djeddou Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü. 0000-0003-1790-6987 Yıldız, Ali Rıza F-7426-2011 7102365439 |
Keywords: | Cam mechanism Roller follower Constrained optimization Differential evolution algorithm Negative radius follower Differential evolution Engineering optimization Cams Constrained optimization Deformation Multiobjective optimization Rollers (machine components) Adaptive differential evolutions Cam mechanism Differential evolution algorithms Engineering design problems Optimization method Optimization procedures Problem formulation Evolutionary algorithms Automation & control systems Engineering, manufacturing |
Issue Date: | 9-Aug-2018 |
Publisher: | Springer |
Citation: | Hamza, F. vd. (2018). "Optimum design of cam-roller follower mechanism using a new evolutionary algorithm". International Journal of Advanced Manufacturing Technology, 99(5-8), 1267-1282. |
Abstract: | The optimum design of a cam mechanism is a very interesting problem in the contact mechanics today, due to the alternative industrial applications as a mechanism of precision. In this paper, a new evolutionary algorithm called modified adaptive differential evolution (MADE) is introduced for multi-objective optimization of a cam mechanism with offset translating roller follower. The optimization procedure is investigated for three objectives among them minimum congestion, maximum efficiency, and maximum strength resistance of the cam. To enhance the design quality of the mechanism in the optimization process, more geometric parameters and more design constraints are included in the problem formulation. In order to validate the developed algorithm, three engineering design problems are solved. The simulation results for the tested problems indicate the effectiveness and the robustness of the proposed algorithm compared to the various existed optimization methods. Finally, the optimal results obtained for the case study example provide very useful decisions for a cam mechanism synthesis. |
URI: | https://doi.org/10.1007/s00170-018-2543-3 https://link.springer.com/article/10.1007/s00170-018-2543-3 http://hdl.handle.net/11452/29998 |
ISSN: | 0268-3768 1433-3015 |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.