Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/30049
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKılıç, Kemal-
dc.date.accessioned2022-12-22T11:32:39Z-
dc.date.available2022-12-22T11:32:39Z-
dc.date.issued2017-04-05-
dc.identifier.citationEroğlu, D. Y. ve Kılıç, K. (2017). ''A novel Hybrid Genetic Local Search Algorithm for feature selection and weighting with an application in strategic decision making in innovation management''. Information Sciences, 405, 18-32.en_US
dc.identifier.issn0020-0255-
dc.identifier.urihttps://doi.org/10.1016/j.ins.2017.04.009-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0020025517306497-
dc.identifier.uri1872-6291-
dc.identifier.urihttp://hdl.handle.net/11452/30049-
dc.description.abstractIn some applications, one needs not only to determine the relevant features but also provide a preferential ordering among the set of relevant features by weights. This paper presents a novel Hybrid Genetic Local Search Algorithm (HGA) in combination with the k-nearest neighbor classifier for simultaneous feature subset selection and feature weighting, particularly for medium-sized data sets. The performance of the proposed algorithm is compared with the performance of alternative feature subset selection algorithms and classifiers through experimental analyses in the various benchmark data sets publicly available on the UCI database. The developed HGA is then applied to a data set gathered from 184 manufacturing firms in the context of innovation management. The data set consists of scores of manufacturing firms in terms of various factors that are known to influence the innovation performance of manufacturing firms and referred to as innovation determinants, and their innovation performances. HGA is used to determine the relative significance of the innovation determinants. Our results demonstrated that the developed HGA is capable of eliminating the irrelevant features and successfully assess feature weights. Moreover, our work is an example how data mining can play a role in the context of strategic management decision making.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectComputer scienceen_US
dc.subjectFeature subset selectionen_US
dc.subjectFeature weightingen_US
dc.subjectHybrid genetic local search algorithmen_US
dc.subjectStrategic decision supporten_US
dc.subjectBenchmarkingen_US
dc.subjectData miningen_US
dc.subjectDecision makingen_US
dc.subjectDecision support systemsen_US
dc.subjectFeature extractionen_US
dc.subjectInnovationen_US
dc.subjectLearning algorithmsen_US
dc.subjectLocal search (optimization)en_US
dc.subjectManagement scienceen_US
dc.subjectManufactureen_US
dc.subjectNearest neighbor searchen_US
dc.subjectHybrid geneticen_US
dc.subjectInnovation managementen_US
dc.subjectStrategic decisionsen_US
dc.subjectInnovation managementen_US
dc.subjectClassification (of information)en_US
dc.titleA novel Hybrid Genetic Local Search Algorithm for feature selection and weighting with an application in strategic decision making in innovation managementen_US
dc.typeArticleen_US
dc.identifier.wos000401688100002tr_TR
dc.identifier.scopus2-s2.0-85017515021tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0003-4506-9434tr_TR
dc.identifier.startpage18tr_TR
dc.identifier.endpage32tr_TR
dc.identifier.volume405tr_TR
dc.relation.journalInformation Sciencesen_US
dc.contributor.buuauthorEroğlu, Duygu Yılmaz-
dc.contributor.researcheridAAH-1079-2021tr_TR
dc.contributor.researcheridB-3894-2013tr_TR
dc.relation.collaborationYurt içitr_TR
dc.subject.wosComputer science, information systemsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ1en_US
dc.contributor.scopusid56120864000tr_TR
dc.subject.scopusFeature Subset Selection; Genetic Algorithm; High-Dimensional Dataen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.