Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/30121
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRaciti, Rosario-
dc.contributor.authorBahariqushchi, Rahim-
dc.contributor.authorTerrasi, Antonio-
dc.contributor.authorMirabella, Salvo-
dc.contributor.authorSummonte, Caterina-
dc.date.accessioned2022-12-28T05:52:17Z-
dc.date.available2022-12-28T05:52:17Z-
dc.date.issued2017-06-21-
dc.identifier.citationRaciti, R. vd. (2017). ''Optical bandgap of semiconductor nanostructures: Methods for experimental data analysis''. Journal of Applied Physics, 121(23).en_US
dc.identifier.issn0021-8979-
dc.identifier.urihttps://doi.org/10.1063/1.4986436-
dc.identifier.urihttps://aip.scitation.org/doi/10.1063/1.4986436-
dc.identifier.uri1089-7550-
dc.identifier.urihttp://hdl.handle.net/11452/30121-
dc.description.abstractDetermination of the optical bandgap (E-g) in semiconductor nanostructures is a key issue in understanding the extent of quantum confinement effects (QCE) on electronic properties and it usually involves some analytical approximation in experimental data reduction and modeling of the light absorption processes. Here, we compare some of the analytical procedures frequently used to evaluate the optical bandgap from reflectance (R) and transmittance (T) spectra. Ge quantum wells and quantum dots embedded in SiO2 were produced by plasma enhanced chemical vapor deposition, and light absorption was characterized by UV-Vis/NIR spectrophotometry. R&T elaboration to extract the absorption spectra was conducted by two approximated methods (single or double pass approximation, single pass analysis, and double pass analysis, respectively) followed by Eg evaluation through linear fit of Tauc or Cody plots. Direct fitting of R&T spectra through a Tauc-Lorentz oscillator model is used as comparison. Methods and data are discussed also in terms of the light absorption process in the presence of QCE. The reported data show that, despite the approximation, the DPA approach joined with Tauc plot gives reliable results, with clear advantages in terms of computational efforts and understanding of QCE.en_US
dc.description.sponsorshipENERGETIC - PON00355_3391233en_US
dc.description.sponsorshipMIUR under project Beyond-Nano - PON a3_00363en_US
dc.language.isoenen_US
dc.publisherAIP Publishingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPhysicsen_US
dc.subjectGermanium quantum dotsen_US
dc.subjectSilicon nanostructuresen_US
dc.subjectAmorphous-germaniumen_US
dc.subjectConfinementen_US
dc.subjectAbsorptionen_US
dc.subjectNanocrystalsen_US
dc.subjectDependenceen_US
dc.subjectMatrixen_US
dc.subjectGAPen_US
dc.subjectElectromagnetic wave absorptionen_US
dc.subjectElectronic propertiesen_US
dc.subjectEnergy gapen_US
dc.subjectGermaniumen_US
dc.subjectLight absorptionen_US
dc.subjectNanostructuresen_US
dc.subjectOptical band gapsen_US
dc.subjectPlasma CVDen_US
dc.subjectPlasma enhanced chemical vapor depositionen_US
dc.subjectAbsorption processen_US
dc.subjectAnalytical approximationen_US
dc.subjectAnalytical procedureen_US
dc.subjectComputational efforten_US
dc.subjectExperimental data analysisen_US
dc.subjectLorentz oscillator modelen_US
dc.subjectQuantum confinement effectsen_US
dc.subjectSemiconductor nanostructuresen_US
dc.subjectChemical analysisen_US
dc.titleOptical bandgap of semiconductor nanostructures: Methods for experimental data analysisen_US
dc.typeArticleen_US
dc.identifier.wos000404047400016tr_TR
dc.identifier.scopus2-s2.0-85021121905tr_TR
dc.relation.tubitak211T142tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Mimarlık Fakültesi/Elektrik Elektronik Mühendisliği Bölümü.tr_TR
dc.identifier.volume121tr_TR
dc.identifier.issue23tr_TR
dc.relation.journalJournal of Applied Physicsen_US
dc.contributor.buuauthorAydınlı, Atilla-
dc.contributor.researcheridABI-7535-2020tr_TR
dc.relation.collaborationYurt içitr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.subject.wosPhysics, applieden_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ2en_US
dc.contributor.scopusid7005432613tr_TR
dc.subject.scopusGermanium; Sige; Nanocrystalen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.