Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/30403
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKoçak, Yılmaz-
dc.contributor.authorGülbandılar, Eyyüp-
dc.date.accessioned2023-01-11T12:47:48Z-
dc.date.available2023-01-11T12:47:48Z-
dc.date.issued2016-12-26-
dc.identifier.citationÖzcan, G. vd. (2017). ''Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models''. Computers and Concrete, 19(3), 275-282.en_US
dc.identifier.issn1598-8198-
dc.identifier.urihttps://doi.org/10.12989/cac.2017.19.3.275-
dc.identifier.urihttp://koreascience.or.kr/article/JAKO201713842132849.page-
dc.identifier.uri1598-818X-
dc.identifier.urihttp://hdl.handle.net/11452/30403-
dc.description.abstractThe aim of this study is to build Machine Learning models to evaluate the effect of blast furnace slag (BFS) and waste tire rubber powder (WTRP) on the compressive strength of cement mortars. In order to develop these models, 12 different mixes with 288 specimens of the 2, 7, 28, and 90 days compressive strength experimental results of cement mortars containing BFS, WTRP and BFS+WTRP were used in training and testing by Random Forest, Ada Boost, SVM and Bayes classifier machine learning models, which implement standard cement tests. The machine learning models were trained with 288 data that acquired from experimental results. The models had four input parameters that cover the amount of Portland cement, BFS, WTRP and sample ages. Furthermore, it had one output parameter which is compressive strength of cement mortars. Experimental observations from compressive strength tests were compared with predictions of machine learning methods. In order to do predictive experimentation, we exploit R programming language and corresponding packages. During experimentation on the dataset, Random Forest, Ada Boost and SVM models have produced notable good outputs with higher coefficients of determination of R2, RMS and MAPE. Among the machine learning algorithms, Ada Boost presented the best R2, RMS and MAPE values, which are 0.9831, 5.2425 and 0.1105, respectively. As a result, in the model, the testing results indicated that experimental data can be estimated to a notable close extent by the model.en_US
dc.description.sponsorshipDüzce Üniversitesi - 2011.03.HD.011tr_TR
dc.language.isoenen_US
dc.publisherTechno-Pressen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectComputer scienceen_US
dc.subjectConstruction & building technologyen_US
dc.subjectEngineeringen_US
dc.subjectMaterials scienceen_US
dc.subjectAda boosten_US
dc.subjectBayes classifier modelsen_US
dc.subjectBlast furnace slagen_US
dc.subjectCompressive strengthen_US
dc.subjectRandom foresten_US
dc.subjectSVMen_US
dc.subjectWaste tire rubber powderen_US
dc.subjectBlast-furnace slagen_US
dc.subjectArtificial neural-networken_US
dc.subjectWaste tire rubberen_US
dc.subjectMechanical-propertiesen_US
dc.subjectFly-ashen_US
dc.subjectPortland-cementen_US
dc.subjectMarble dusten_US
dc.subjectConcreteen_US
dc.subjectPredictionen_US
dc.subjectFuzzyen_US
dc.subjectAda (programming language)en_US
dc.subjectArtificial intelligenceen_US
dc.subjectBlast furnacesen_US
dc.subjectCementsen_US
dc.subjectDecision treesen_US
dc.subjectLearning algorithmsen_US
dc.subjectLearning systemsen_US
dc.subjectMortaren_US
dc.subjectPortland cementen_US
dc.subjectPowdersen_US
dc.subjectRubberen_US
dc.subjectSlagsen_US
dc.subjectStrength of materialsen_US
dc.subjectCompressive strengthen_US
dc.subjectBayes classifieren_US
dc.subjectInput parameteren_US
dc.subjectMachine learning methodsen_US
dc.subjectMachine learning modelsen_US
dc.subjectOutput parametersen_US
dc.subjectRandom forestsen_US
dc.subjectTraining and testingen_US
dc.subjectWaste tire rubber powdersen_US
dc.titleEstimation of compressive strength of BFS and WTRP blended cement mortars with machine learning modelsen_US
dc.typeArticleen_US
dc.identifier.wos000399861700006tr_TR
dc.identifier.scopus2-s2.0-85015845396tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Bilgisayar Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0002-1166-5919tr_TR
dc.identifier.startpage275tr_TR
dc.identifier.endpage282tr_TR
dc.identifier.volume19tr_TR
dc.identifier.issue3tr_TR
dc.relation.journalComputers and Concreteen_US
dc.contributor.buuauthorÖzcan, Giyasettin-
dc.relation.collaborationYurt içitr_TR
dc.subject.wosComputer science, interdisciplinary applicationsen_US
dc.subject.wosConstruction & building technologyen_US
dc.subject.wosEngineeringen_US
dc.subject.wosCivilen_US
dc.subject.wosMaterials science, characterization & testingen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ2en_US
dc.wos.quartileQ3 (Computer science, interdisciplinary applications)en_US
dc.contributor.scopusid15770103700tr_TR
dc.subject.scopusCompressive Strength; High Performance Concrete; Predictionen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.