Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/30695
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2023-01-30T05:51:04Z-
dc.date.available2023-01-30T05:51:04Z-
dc.date.issued2020-03-07-
dc.identifier.citationYaylı, M, Ö. (2020). "Axial vibration analysis of a Rayleigh nanorod with deformable boundaries". Microsystem Technologies, 26(8), 2661-2671.en_US
dc.identifier.issn0946-7076-
dc.identifier.issn1432-1858-
dc.identifier.urihttps://doi.org/10.1007/s00542-020-04808-7-
dc.identifier.urihttps://link.springer.com/article/10.1007/s00542-020-04808-7-
dc.identifier.urihttp://hdl.handle.net/11452/30695-
dc.description.abstractIn this study, the free axial vibration of Rayleigh nanorods with axial restraints is studied via Eringens' nonlocal elasticity theory. This higher order elasticity theory takes into account the size effect into the formulation due to dealing with micro and nanostructures. The boundary conditions and equation of motion are obtained using Hamilton's principle. Two symmetrical axial elastic springs are attached to a nanorod at both ends. The novelty of the present study is that it seeks to obtain a general eigen value algorithm for the angular frequencies subjected to the rigid or restrained boundary conditions in a nanorod for the first time. A Fourier sine series is used to work Stokes' transformation for the Rayleigh nanorods with elastic springs at the ends. Afterward, the effect of the spring coefficient on the the eigen-frequency is investigated. Also, the effects of the nonlocal parameter and the elastic springs on the eigen-frequency is reported.en_US
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectStrain gradient elasticityen_US
dc.subjectBuckliking analysisen_US
dc.subjectCarbon nanotubesen_US
dc.subjectNonlocal elasticityen_US
dc.subjectContinuumen_US
dc.subjectEngineeringen_US
dc.subjectScience & technology - other topicsen_US
dc.subjectMaterials scienceen_US
dc.subjectPhysicsen_US
dc.subjectBoundary conditionsen_US
dc.subjectElasticityen_US
dc.subjectEquations of motionen_US
dc.subjectFourier seriesen_US
dc.subjectNanorodsen_US
dc.subjectSprings (components)en_US
dc.subjectAngular frequenciesen_US
dc.subjectEigen frequenciesen_US
dc.subjectEquation of motionen_US
dc.subjectFourier sine seriesen_US
dc.subjectHigher order elasticitiesen_US
dc.subjectMicro and nanostructuresen_US
dc.subjectNon-local elasticity theoriesen_US
dc.subjectSpring coefficienten_US
dc.subjectVibration analysisen_US
dc.titleAxial vibration analysis of a Rayleigh nanorod with deformable boundariesen_US
dc.typeArticleen_US
dc.identifier.wos000544041700028tr_TR
dc.identifier.scopus2-s2.0-85081714692tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentBursa Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği.tr_TR
dc.contributor.orcid0000-0003-2231-170Xtr_TR
dc.identifier.startpage2661tr_TR
dc.identifier.endpage2671tr_TR
dc.identifier.volume26tr_TR
dc.identifier.issue8tr_TR
dc.relation.journalMicrosystem Technologiesen_US
dc.contributor.buuauthorYaylı, Mustafa Özgür-
dc.subject.wosEngineering, electrical & electronicen_US
dc.subject.wosNanoscience & nanotechnologyen_US
dc.subject.wosMaterials science, multidisciplinaryen_US
dc.subject.wosPhysics, applieden_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ3en_US
dc.wos.quartileQ4 (Nanoscience & nanotechnology)en_US
dc.contributor.scopusid44661926700tr_TR
dc.subject.scopusNonlocal Elasticity; Strain Gradient; Nonlocalen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.