Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/30708
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2023-01-30T08:36:40Z-
dc.date.available2023-01-30T08:36:40Z-
dc.date.issued2020-10-13-
dc.identifier.citationKurtulmuş, F. (2020). "Identification of sunflower seeds with deep convolutional neural networks". Journal of Food Measurement and Characterization, 15(2), 1024-1033.en_US
dc.identifier.issn2193-4126-
dc.identifier.issn2193-4134-
dc.identifier.urihttps://doi.org/10.1007/s11694-020-00707-7-
dc.identifier.urihttps://link.springer.com/article/10.1007/s11694-020-00707-7-
dc.identifier.urihttp://hdl.handle.net/11452/30708-
dc.description.abstractIn the food and agricultural industries, it is crucial to identify and to choose correct sunflower seeds that meet specific requirements. Deep learning and computer vision methods can help identify sunflower seeds. In this study, a computer vision system was proposed, trained, and tested to identify four varieties of sunflower seeds using deep learning methodology and a regular color camera. Image acquisition was carried out under controlled illumination conditions. An image segmentation procedure was employed to reduce the workload in obtaining training images required for training deep convolutional neural network models. Three deep learning architectures, namely AlexNet, GoogleNet, and ResNet, were investigated for identifying sunflower seeds in this study. Different solver types were also evaluated to determine the best deep learning model in terms of both accuracy and training time. About 4800 sunflower seeds were inspected individually for training and testing. The highest classification accuracy (95%) was succeeded with the GoogleNet algorithm.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFood science & technologyen_US
dc.subjectSunfloweren_US
dc.subjectSeed classificationen_US
dc.subjectDeep learningen_US
dc.subjectNeural networksen_US
dc.subjectComputer visionen_US
dc.subjectVisionen_US
dc.subjectImageen_US
dc.subjectMachineen_US
dc.subjectSystemen_US
dc.subjectAgricultural robotsen_US
dc.subjectAgricultureen_US
dc.subjectComputer visionen_US
dc.subjectConvolutionen_US
dc.subjectConvolutional neural networksen_US
dc.subjectDeep neural networksen_US
dc.subjectImage segmentationen_US
dc.subjectLearning systemsen_US
dc.subjectAgricultural industriesen_US
dc.subjectClassification accuracyen_US
dc.subjectComputer vision systemen_US
dc.subjectIllumination conditionsen_US
dc.subjectLearning architecturesen_US
dc.subjectLearning architecturesen_US
dc.subjectLearning modelsen_US
dc.subjectSegmentation procedureen_US
dc.subjectTraining and testingen_US
dc.subjectDeep learningen_US
dc.titleIdentification of sunflower seeds with deep convolutional neural networksen_US
dc.typeArticleen_US
dc.identifier.wos000579679900003tr_TR
dc.identifier.scopus2-s2.0-85092691863tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentBursa Uludağ Üniversitesi/Ziraat Fakültesi/Biyosistem Mühendisliği Bölümü.tr_TR
dc.relation.bapBAPtr_TR
dc.identifier.startpage1024tr_TR
dc.identifier.endpage1033tr_TR
dc.identifier.volume15tr_TR
dc.identifier.issue2tr_TR
dc.relation.journalJournal of Food Measurement and Characterizationen_US
dc.contributor.buuauthorKurtulmuş, Ferhat-
dc.contributor.researcheridDBP-8176-2022tr_TR
dc.subject.wosFood science & technologyen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ3en_US
dc.contributor.scopusid15848202900tr_TR
dc.subject.scopusCorn Ears; Seed; Computer Visionen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.