Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/30829
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Koçal, Osman Hilmi | - |
dc.date.accessioned | 2023-02-03T12:28:36Z | - |
dc.date.available | 2023-02-03T12:28:36Z | - |
dc.date.issued | 2016-05-17 | - |
dc.identifier.citation | Hatun, M. ve Koçal, O. H. (2017). ''Stochastic convergence analysis of recursive successive over-relaxation algorithm in adaptive filtering''. Signal, Image and Video Processing, 11(1), 137-144. | en_US |
dc.identifier.issn | 1863-1703 | - |
dc.identifier.uri | https://doi.org/10.1007/s11760-016-0912-7 | - |
dc.identifier.uri | 1863-1711 | - |
dc.identifier.uri | https://link.springer.com/article/10.1007/s11760-016-0912-7 | - |
dc.identifier.uri | http://hdl.handle.net/11452/30829 | - |
dc.description.abstract | A stochastic convergence analysis of the parameter vector estimation obtained by the recursive successive over-relaxation (RSOR) algorithm is performed in mean sense and mean-square sense. Also, excess of mean-square error and misadjustment analysis of the RSOR algorithm is presented. These results are verified by ensemble-averaged computer simulations. Furthermore, the performance of the RSOR algorithm is examined using a system identification example and compared with other widely used adaptive algorithms. Computer simulations show that the RSOR algorithm has better convergence rate than the widely used gradient-based algorithms and gives comparable results obtained by the recursive least-squares RLS algorithm. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Engineering | en_US |
dc.subject | Imaging science & photographic technology | en_US |
dc.subject | Adaptive filters | en_US |
dc.subject | Successive over-relaxation | en_US |
dc.subject | Gauss-seidel | en_US |
dc.subject | System identification | en_US |
dc.subject | Convergence analysis | en_US |
dc.subject | Adaptive algorithms | en_US |
dc.subject | Adaptive filtering | en_US |
dc.subject | Algorithms | en_US |
dc.subject | Identification (control systems) | en_US |
dc.subject | Mean square error | en_US |
dc.subject | Religious buildings | en_US |
dc.subject | Stochastic systems | en_US |
dc.subject | Convergence analysis | en_US |
dc.subject | Convergence rates | en_US |
dc.subject | Ensemble-averaged | en_US |
dc.subject | Gradient based algorithm | en_US |
dc.subject | Parameter vectors | en_US |
dc.subject | Recursive least square (RLS) | en_US |
dc.subject | RLS algorithms | en_US |
dc.subject | RLS algorithms | en_US |
dc.subject | Successive over relaxation | en_US |
dc.subject | Adaptive filters | en_US |
dc.title | Stochastic convergence analysis of recursive successive over-relaxation algorithm in adaptive filtering | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000392288800018 | tr_TR |
dc.identifier.scopus | 2-s2.0-84976313525 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Mühendislik Fakültesi/Elektrik-Elektronik Mühendisliği Bölümü. | tr_TR |
dc.contributor.orcid | 0000-0003-0279-5508 | tr_TR |
dc.identifier.startpage | 137 | tr_TR |
dc.identifier.endpage | 144 | tr_TR |
dc.identifier.volume | 11 | tr_TR |
dc.identifier.issue | 1 | tr_TR |
dc.relation.journal | Signal, Image and Video Processing | en_US |
dc.contributor.buuauthor | Hatun, Metin | - |
dc.contributor.researcherid | AAH-2199-2021 | tr_TR |
dc.relation.collaboration | Yurt içi | tr_TR |
dc.subject.wos | Engineering, electrical & electronic | en_US |
dc.subject.wos | Imaging science & photographic technology | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q3 | en_US |
dc.contributor.scopusid | 54684165800 | tr_TR |
dc.subject.scopus | Recursive Algorithm; Adaptive Filtering; Beamforming | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.