Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/30829
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKoçal, Osman Hilmi-
dc.date.accessioned2023-02-03T12:28:36Z-
dc.date.available2023-02-03T12:28:36Z-
dc.date.issued2016-05-17-
dc.identifier.citationHatun, M. ve Koçal, O. H. (2017). ''Stochastic convergence analysis of recursive successive over-relaxation algorithm in adaptive filtering''. Signal, Image and Video Processing, 11(1), 137-144.en_US
dc.identifier.issn1863-1703-
dc.identifier.urihttps://doi.org/10.1007/s11760-016-0912-7-
dc.identifier.uri1863-1711-
dc.identifier.urihttps://link.springer.com/article/10.1007/s11760-016-0912-7-
dc.identifier.urihttp://hdl.handle.net/11452/30829-
dc.description.abstractA stochastic convergence analysis of the parameter vector estimation obtained by the recursive successive over-relaxation (RSOR) algorithm is performed in mean sense and mean-square sense. Also, excess of mean-square error and misadjustment analysis of the RSOR algorithm is presented. These results are verified by ensemble-averaged computer simulations. Furthermore, the performance of the RSOR algorithm is examined using a system identification example and compared with other widely used adaptive algorithms. Computer simulations show that the RSOR algorithm has better convergence rate than the widely used gradient-based algorithms and gives comparable results obtained by the recursive least-squares RLS algorithm.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEngineeringen_US
dc.subjectImaging science & photographic technologyen_US
dc.subjectAdaptive filtersen_US
dc.subjectSuccessive over-relaxationen_US
dc.subjectGauss-seidelen_US
dc.subjectSystem identificationen_US
dc.subjectConvergence analysisen_US
dc.subjectAdaptive algorithmsen_US
dc.subjectAdaptive filteringen_US
dc.subjectAlgorithmsen_US
dc.subjectIdentification (control systems)en_US
dc.subjectMean square erroren_US
dc.subjectReligious buildingsen_US
dc.subjectStochastic systemsen_US
dc.subjectConvergence analysisen_US
dc.subjectConvergence ratesen_US
dc.subjectEnsemble-averageden_US
dc.subjectGradient based algorithmen_US
dc.subjectParameter vectorsen_US
dc.subjectRecursive least square (RLS)en_US
dc.subjectRLS algorithmsen_US
dc.subjectRLS algorithmsen_US
dc.subjectSuccessive over relaxationen_US
dc.subjectAdaptive filtersen_US
dc.titleStochastic convergence analysis of recursive successive over-relaxation algorithm in adaptive filteringen_US
dc.typeArticleen_US
dc.identifier.wos000392288800018tr_TR
dc.identifier.scopus2-s2.0-84976313525tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Elektrik-Elektronik Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0003-0279-5508tr_TR
dc.identifier.startpage137tr_TR
dc.identifier.endpage144tr_TR
dc.identifier.volume11tr_TR
dc.identifier.issue1tr_TR
dc.relation.journalSignal, Image and Video Processingen_US
dc.contributor.buuauthorHatun, Metin-
dc.contributor.researcheridAAH-2199-2021tr_TR
dc.relation.collaborationYurt içitr_TR
dc.subject.wosEngineering, electrical & electronicen_US
dc.subject.wosImaging science & photographic technologyen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ3en_US
dc.contributor.scopusid54684165800tr_TR
dc.subject.scopusRecursive Algorithm; Adaptive Filtering; Beamformingen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.