Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/30905
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gözert, Gül Karadeniz | - |
dc.date.accessioned | 2023-02-08T10:44:54Z | - |
dc.date.available | 2023-02-08T10:44:54Z | - |
dc.date.issued | 2017-03 | - |
dc.identifier.citation | Özkoç, A. vd. (2017). ''Triangular and square triangular numbers involving generalized pell numbers''. Utilitas Mathematica, 102, 231-254. | en_US |
dc.identifier.issn | 0315-3681 | - |
dc.identifier.uri | http://hdl.handle.net/11452/30905 | - |
dc.description.abstract | Triangular numbers denoted by T-n are the numbers of the form T-n = n(2+1)/2 for n >= 0. There are infinitely many triangular numbers that are also square numbers. These numbers are called square triangular numbers and denoted by S-n. One can write Sn as S-n = s(n)(2) =t(n)(t(n)+1)/2 where s(n) and to denote the sides of the corresponding square and triangle. In this work, we derive some algebraic identities on triangular, square triangular numbers and also squares and triangles. We construct a connection between triangular and square triangular numbers. We determine when the equality T-n. = S-n, holds by using s(n), and t(n). We also deduce some formulas on perfect squares, sums of s(n), t(n), S-n,T-n, divisibility properties and integer solutions of Pell equations. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Util Math Publication | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Mathematics | en_US |
dc.subject | Triangular | en_US |
dc.subject | Square triangular | en_US |
dc.subject | Congruent | en_US |
dc.subject | Polygonal | en_US |
dc.subject | Balancing | en_US |
dc.subject | Cobalancing | en_US |
dc.subject | Pell numbers | en_US |
dc.subject | Binary linear recurrences | en_US |
dc.subject | Perfect squares | en_US |
dc.subject | Divisibility | en_US |
dc.subject | Pell equation | en_US |
dc.title | Triangular and square triangular numbers involving generalized pell numbers | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000398243200018 | tr_TR |
dc.identifier.scopus | 2-s2.0-85030719849 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü. | tr_TR |
dc.relation.bap | UAP(F)-2010/55 | tr_TR |
dc.identifier.startpage | 231 | tr_TR |
dc.identifier.endpage | 254 | tr_TR |
dc.identifier.volume | 102 | tr_TR |
dc.relation.journal | Utilitas Mathematica | en_US |
dc.contributor.buuauthor | Özkoç, Arzu | - |
dc.contributor.buuauthor | Tekcan, Ahmet | - |
dc.contributor.researcherid | AAH-8518-2021 | tr_TR |
dc.relation.collaboration | Yurt içi | tr_TR |
dc.subject.wos | Mathematics, applied | en_US |
dc.subject.wos | Statistics & probability | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.contributor.scopusid | 24485340700 | tr_TR |
dc.contributor.scopusid | 55883777900 | tr_TR |
dc.subject.scopus | Diophantine Equation; Number; Linear Forms in Logarithms | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.