Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız:
http://hdl.handle.net/11452/30905
Tüm üstveri kaydı
Dublin Core Alanı | Değer | Dil |
---|---|---|
dc.contributor.author | Gözert, Gül Karadeniz | - |
dc.date.accessioned | 2023-02-08T10:44:54Z | - |
dc.date.available | 2023-02-08T10:44:54Z | - |
dc.date.issued | 2017-03 | - |
dc.identifier.citation | Özkoç, A. vd. (2017). ''Triangular and square triangular numbers involving generalized pell numbers''. Utilitas Mathematica, 102, 231-254. | en_US |
dc.identifier.issn | 0315-3681 | - |
dc.identifier.uri | http://hdl.handle.net/11452/30905 | - |
dc.description.abstract | Triangular numbers denoted by T-n are the numbers of the form T-n = n(2+1)/2 for n >= 0. There are infinitely many triangular numbers that are also square numbers. These numbers are called square triangular numbers and denoted by S-n. One can write Sn as S-n = s(n)(2) =t(n)(t(n)+1)/2 where s(n) and to denote the sides of the corresponding square and triangle. In this work, we derive some algebraic identities on triangular, square triangular numbers and also squares and triangles. We construct a connection between triangular and square triangular numbers. We determine when the equality T-n. = S-n, holds by using s(n), and t(n). We also deduce some formulas on perfect squares, sums of s(n), t(n), S-n,T-n, divisibility properties and integer solutions of Pell equations. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Util Math Publication | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Mathematics | en_US |
dc.subject | Triangular | en_US |
dc.subject | Square triangular | en_US |
dc.subject | Congruent | en_US |
dc.subject | Polygonal | en_US |
dc.subject | Balancing | en_US |
dc.subject | Cobalancing | en_US |
dc.subject | Pell numbers | en_US |
dc.subject | Binary linear recurrences | en_US |
dc.subject | Perfect squares | en_US |
dc.subject | Divisibility | en_US |
dc.subject | Pell equation | en_US |
dc.title | Triangular and square triangular numbers involving generalized pell numbers | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000398243200018 | tr_TR |
dc.identifier.scopus | 2-s2.0-85030719849 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü. | tr_TR |
dc.relation.bap | UAP(F)-2010/55 | tr_TR |
dc.identifier.startpage | 231 | tr_TR |
dc.identifier.endpage | 254 | tr_TR |
dc.identifier.volume | 102 | tr_TR |
dc.relation.journal | Utilitas Mathematica | en_US |
dc.contributor.buuauthor | Özkoç, Arzu | - |
dc.contributor.buuauthor | Tekcan, Ahmet | - |
dc.contributor.researcherid | AAH-8518-2021 | tr_TR |
dc.relation.collaboration | Yurt içi | tr_TR |
dc.subject.wos | Mathematics, applied | en_US |
dc.subject.wos | Statistics & probability | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.contributor.scopusid | 24485340700 | tr_TR |
dc.contributor.scopusid | 55883777900 | tr_TR |
dc.subject.scopus | Diophantine Equation; Number; Linear Forms in Logarithms | en_US |
Koleksiyonlarda Görünür: | Scopus Web of Science |
Bu öğenin dosyaları:
Bu öğeyle ilişkili dosya bulunmamaktadır.
DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.