Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/30905
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGözert, Gül Karadeniz-
dc.date.accessioned2023-02-08T10:44:54Z-
dc.date.available2023-02-08T10:44:54Z-
dc.date.issued2017-03-
dc.identifier.citationÖzkoç, A. vd. (2017). ''Triangular and square triangular numbers involving generalized pell numbers''. Utilitas Mathematica, 102, 231-254.en_US
dc.identifier.issn0315-3681-
dc.identifier.urihttp://hdl.handle.net/11452/30905-
dc.description.abstractTriangular numbers denoted by T-n are the numbers of the form T-n = n(2+1)/2 for n >= 0. There are infinitely many triangular numbers that are also square numbers. These numbers are called square triangular numbers and denoted by S-n. One can write Sn as S-n = s(n)(2) =t(n)(t(n)+1)/2 where s(n) and to denote the sides of the corresponding square and triangle. In this work, we derive some algebraic identities on triangular, square triangular numbers and also squares and triangles. We construct a connection between triangular and square triangular numbers. We determine when the equality T-n. = S-n, holds by using s(n), and t(n). We also deduce some formulas on perfect squares, sums of s(n), t(n), S-n,T-n, divisibility properties and integer solutions of Pell equations.en_US
dc.language.isoenen_US
dc.publisherUtil Math Publicationen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMathematicsen_US
dc.subjectTriangularen_US
dc.subjectSquare triangularen_US
dc.subjectCongruenten_US
dc.subjectPolygonalen_US
dc.subjectBalancingen_US
dc.subjectCobalancingen_US
dc.subjectPell numbersen_US
dc.subjectBinary linear recurrencesen_US
dc.subjectPerfect squaresen_US
dc.subjectDivisibilityen_US
dc.subjectPell equationen_US
dc.titleTriangular and square triangular numbers involving generalized pell numbersen_US
dc.typeArticleen_US
dc.identifier.wos000398243200018tr_TR
dc.identifier.scopus2-s2.0-85030719849tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.tr_TR
dc.relation.bapUAP(F)-2010/55tr_TR
dc.identifier.startpage231tr_TR
dc.identifier.endpage254tr_TR
dc.identifier.volume102tr_TR
dc.relation.journalUtilitas Mathematicaen_US
dc.contributor.buuauthorÖzkoç, Arzu-
dc.contributor.buuauthorTekcan, Ahmet-
dc.contributor.researcheridAAH-8518-2021tr_TR
dc.relation.collaborationYurt içitr_TR
dc.subject.wosMathematics, applieden_US
dc.subject.wosStatistics & probabilityen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.contributor.scopusid24485340700tr_TR
dc.contributor.scopusid55883777900tr_TR
dc.subject.scopusDiophantine Equation; Number; Linear Forms in Logarithmsen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.