Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/31030
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2023-02-15T08:18:08Z-
dc.date.available2023-02-15T08:18:08Z-
dc.date.issued2018-09-11-
dc.identifier.citationYurtkuran, A. vd. (2018). ''A novel artificial bee colony algorithm for the workforce scheduling and balancing problem in sub-assembly lines with limited buffers''. Applied Soft Computing Journal, 73, 767-782.en_US
dc.identifier.issn1568-4946-
dc.identifier.issn1872-9681-
dc.identifier.urihttps://doi.org/10.1016/j.asoc.2018.09.016-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S1568494618305337-
dc.identifier.urihttp://hdl.handle.net/11452/31030-
dc.description.abstractIn this study, a workforce scheduling and balancing problem is solved in unpaced sub-assembly lines with buffers feeding the paced body assembly line of a car manufacturer. The goal is to determine the minimum workforce required to process split lots at sub-assembly stations to feed the paced line over a periodic time window. Limited by a given buffer capacity at each station but with flexible start times for each split lot, an efficient workforce scheduling is possible to prevent shortages in downstream stations. Therefore, a stock-continuity equation has been proposed yielding the size of those split lots. Next, a single-objective Mixed Integer Programming (MIP) model is formulated for the problem as a combination of two implicitly weighted goals to minimise the workforce and the unbalanced workloads. The problem is a variant of workforce scheduling and routing problem with time windows and negligible walking distances. Due to the non-deterministic similar to polyomial-time-hardness of the problem, we proposed an improved Artificial Bee Colony (ABC) algorithm named as discrete ABC with solution acceptance rule and multi-search (SAMSABC). The proposed algorithm is compared with different variants of ABC and other well-known metaheuristic algorithms such as Particle Swarm Optimisation and Differential Evolution on generated test cases. The computational results demonstrate the superiority of the proposed ABC algorithm and reveal that the SAMSABC can achieve accurate results within short computational times.tr_TR
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectComputer scienceen_US
dc.subjectWorkforce schedulingen_US
dc.subjectWorkforce balancingen_US
dc.subjectArtificial bee colonyen_US
dc.subjectUnpaced assemblyen_US
dc.subjectBuffered feeder linesen_US
dc.subjectVehicle-routing problemen_US
dc.subjectManpower allocationen_US
dc.subjectDifferential evolutionen_US
dc.subjectTime windowsen_US
dc.subjectOptimizationen_US
dc.subjectAssemblyen_US
dc.subjectAssembly machinesen_US
dc.subjectAutomobile manufactureen_US
dc.subjectInteger programmingen_US
dc.subjectParticle swarm optimization (PSO)en_US
dc.subjectPolynomial approximationen_US
dc.subjectSchedulingen_US
dc.subjectArtificial bee coloniesen_US
dc.subjectArtificial bee colony algorithmsen_US
dc.subjectArtificial bee colony algorithms (ABC)en_US
dc.subjectFeeder lineen_US
dc.subjectMeta heuristic algorithmen_US
dc.subjectMixed integer programming modelen_US
dc.subjectParticle swarm optimisationen_US
dc.subjectWorkforce schedulingen_US
dc.subjectPersonnelen_US
dc.titleA novel artificial bee colony algorithm for the workforce scheduling and balancing problem in sub-assembly lines with limited buffersen_US
dc.typeArticleen_US
dc.identifier.wos000450124900053tr_TR
dc.identifier.scopus2-s2.0-85054225513tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0003-2978-2811tr_TR
dc.contributor.orcid0000-0003-1744-3062tr_TR
dc.contributor.orcid0000-0002-9220-7353tr_TR
dc.identifier.startpage767tr_TR
dc.identifier.endpage782tr_TR
dc.identifier.volume73tr_TR
dc.relation.journalApplied Soft Computing Journalen_US
dc.contributor.buuauthorYurtkuran, Alkın-
dc.contributor.buuauthorYağmahan, Betül-
dc.contributor.buuauthorEmel, Erdal-
dc.contributor.researcheridAAH-1410-2021tr_TR
dc.contributor.researcheridB-5557-2017tr_TR
dc.contributor.researcheridN-8691-2014tr_TR
dc.subject.wosComputer science, artificial intelligenceen_US
dc.subject.wosComputer science, interdisciplinary applicationsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ1en_US
dc.contributor.scopusid26031880400tr_TR
dc.contributor.scopusid23487445600tr_TR
dc.contributor.scopusid6602919521tr_TR
dc.subject.scopusWorkforce Scheduling; Home Health Care; Delivery Of Health Careen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.