Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/31516
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2023-03-13T05:56:10Z-
dc.date.available2023-03-13T05:56:10Z-
dc.date.issued2007-
dc.identifier.citationÖzmutlu, S. vd. (2007). "Using conditional probabilities for automatic new topic identification". Online Information Review, 31(4), 491-515.en_US
dc.identifier.issn14684527-
dc.identifier.urihttps://doi.org/10.1108/14684520710780449-
dc.identifier.urihttps://www.emerald.com/insight/content/doi/10.1108/14684520710780449/full/html-
dc.identifier.urihttp://hdl.handle.net/11452/31516-
dc.description.abstractPurpose - One of the most important dimensions of search engine user information seeking behaviour is content-based behaviour. One of the main elements in developing a personalised intelligent search engine is new topic identification. The purpose of this study is to perform automatic new topic identification in search engine transaction logs using conditional probabilities of new topic arrivals. Design/methodology/approach - Sample data logs from FAST (currently owned by Yahoo!) and Excite (currently owned by IAC Search & Media) are used in the study. Conditional probabilities of new topic arrivals and topic continuations given query category are used to estimate new topic arrivals. Findings - The findings of this study show that the conditional probability approach reduced overestimation of topic shifts, increasing some performance measures to their highest ever value compared to previous studies. A straightforward procedure such as the conditional probability approach can be as successful as, and for some measures more successful than, more complex methods applied in previous automatic new topic identification studies. Originality/value - A straightforward procedure that can enable fast automatic new topic identification, a problem not yet solved, and an important step towards personalised search engines.en_US
dc.language.isoenen_US
dc.publisherEmerald Group Publishingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectComputer scienceen_US
dc.subjectInformation science & library scienceen_US
dc.subjectInformation-seekingen_US
dc.subjectWeben_US
dc.subjectUsersen_US
dc.subjectLifeen_US
dc.subjectBehaviouren_US
dc.subjectInformation servicesen_US
dc.subjectQuery categoriesen_US
dc.subjectSearch enginesen_US
dc.subjectTopic identificationen_US
dc.subjectInformation retrievalen_US
dc.subjectSearch enginesen_US
dc.subjectStatistical analysisen_US
dc.subjectOnline searchingen_US
dc.subjectProbability distributionsen_US
dc.subjectProblem solvingen_US
dc.subjectStatistical methodsen_US
dc.subjectUser interfacesen_US
dc.titleUsing conditional probabilities for automatic new topic identificationen_US
dc.typeArticleen_US
dc.identifier.wos000249328100007tr_TR
dc.identifier.scopus2-s2.0-39649110569tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü.tr_TR
dc.identifier.startpage491tr_TR
dc.identifier.endpage515tr_TR
dc.identifier.volume34tr_TR
dc.identifier.issue4tr_TR
dc.relation.journalOnline Information Reviewen_US
dc.contributor.buuauthorÖzmutlu, Seda-
dc.contributor.buuauthorÖzmutlu, Hüseyin C.-
dc.contributor.buuauthorBüyük, Buket-
dc.contributor.researcheridAAH-4480-2021tr_TR
dc.contributor.researcheridABH-5209-2020tr_TR
dc.subject.wosComputer science, information systemsen_US
dc.subject.wosInformation science & library scienceen_US
dc.indexed.wosSCIEen_US
dc.indexed.wosSSCIen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ2 (Information science & library science)en_US
dc.wos.quartileQ3 (Computer science, information systems)en_US
dc.contributor.scopusid6603660605tr_TR
dc.contributor.scopusid6603061328tr_TR
dc.contributor.scopusid23570445900tr_TR
dc.subject.scopusQuery Reformulation; Image Indexing; Digital Librariesen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.