Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/32614
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2023-05-10T13:33:14Z-
dc.date.available2023-05-10T13:33:14Z-
dc.date.issued2013-03-
dc.identifier.citationDerebaşı, N. (2013). “Giant magnetoimpedance effect: Concept and prediction in amorphous materials”. Journal of Superconductivity and Novel Magnetism, 26(4), Special Issue, 1075-1078.en_US
dc.identifier.issn1557-1939-
dc.identifier.issn1557-1947-
dc.identifier.urihttps://doi.org/10.1007/s10948-012-1923-4-
dc.identifier.urihttp://hdl.handle.net/11452/32614-
dc.description.abstractGiant magneto impedance (GMI) effect was experimentally measured on as-cast, post-production and coated with chemical technique amorphous wire and ribbon materials consisted of varied chemical composition over a frequency range from 0.1 to 8 MHz under a static magnetic field between -8 and +8 kA/m. The results show that each amorphous sample has a certain operational frequency for which the GMI effect has maximum magnitude and the other parameters such as annealing and coating have a significant influence on the GMI effect. It is believed that the domain structure and wall mechanism in the material are responsible for this behaviour. A 3-node input layer, 1-node output layer artificial neural network (ANN) model with three hidden layers including 30 neurons and full connectivity between the nodes was developed. A total of 1600 input vectors obtained from varied treated samples was available in the training data set. After the network was trained, better results were obtained from the network formed by the hyperbolic tangent transfer function in the hidden layers, there was a sigmoid transfer function in the output layer and we predicted the GMI. Comparing the predicted values obtained from the ANN model with the experimental data indicates that a well-trained neural network model provides very accurate results.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPhysicsen_US
dc.subjectGMI effecten_US
dc.subjectAmorphous materialsen_US
dc.subjectDomainsen_US
dc.subjectArtificial neural networken_US
dc.subjectRibbonsen_US
dc.subjectWiresen_US
dc.subjectCoated materialsen_US
dc.subjectMagnetic domainsen_US
dc.subjectNeural networksen_US
dc.subjectTransfer functionsen_US
dc.subjectArtificial neural network modelsen_US
dc.subjectChemical compositionsen_US
dc.subjectGiant magneto impedance effecten_US
dc.subjectGMI effectsen_US
dc.subjectNeural network modelen_US
dc.subjectOperational frequencyen_US
dc.subjectSigmoid transfer functionen_US
dc.subjectStatic magnetic fieldsen_US
dc.subjectAmorphous materialsen_US
dc.titleGiant magnetoimpedance effect: Concept and prediction in amorphous materialsen_US
dc.typeArticleen_US
dc.typeProceedings Paperen_US
dc.identifier.wos000317014500062tr_TR
dc.identifier.scopus2-s2.0-84876471638tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Fizik Bölümü.tr_TR
dc.relation.bap2009/29tr_TR
dc.contributor.orcid0000-0003-2546-0022tr_TR
dc.identifier.startpage1075tr_TR
dc.identifier.endpage1078tr_TR
dc.identifier.volume26tr_TR
dc.identifier.issue4, Special Issueen_US
dc.relation.journalJournal of Superconductivity and Novel Magnetismen_US
dc.contributor.buuauthorDerebaşı, Naim-
dc.contributor.researcheridAAI-2254-2021tr_TR
dc.subject.wosPhysics, applieden_US
dc.subject.wosPhysics, condensed matteren_US
dc.indexed.wosSCIEen_US
dc.indexed.wosCPCISen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ3 (Physics, applied)en_US
dc.wos.quartileQ4 (Physics, condensed matter)en_US
dc.contributor.scopusid11540936300tr_TR
dc.subject.scopusMagnetic Sensors; Electric Impedance; Ribbonsen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.