Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/32616
Title: The constant term of the minimal polynomial of cos(2 pi/n) over Q
Authors: Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı.
0000-0002-0700-5774
0000-0002-0700-5774
Demirci, Musa
Cangül, İsmail Naci
ABA-6206-2020
J-3505-2017
23566581100
57189022403
Keywords: Hecke groups
Minimal polynomial
Constant term
Hecke groups
Subgroups
Issue Date: Mar-2013
Publisher: Springer International Publishing
Citation: Demirci, M. ve Cangül, İ. N. (2013). “The constant term of the minimal polynomial of cos(2 pi/n) over Q”. Fixed Point Theory and Applications, 2013.
Abstract: Let H(lambda(q)) be the Hecke group associated to lambda(q) = 2cos pi/q for q >= 3 integer. In this paper, we determine the constant term of the minimal polynomial of lambda(q) denoted by P-q*(x).
URI: https://doi.org/10.1186/1687-1812-2013-77
https://fixedpointtheoryandalgorithms.springeropen.com/articles/10.1186/1687-1812-2013-77
http://hdl.handle.net/11452/32616
ISSN: 1687-1812
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Demirci_Cangül_2013.pdf260.23 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons