Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/32616
Title: | The constant term of the minimal polynomial of cos(2 pi/n) over Q |
Authors: | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı. 0000-0002-0700-5774 0000-0002-0700-5774 Demirci, Musa Cangül, İsmail Naci ABA-6206-2020 J-3505-2017 23566581100 57189022403 |
Keywords: | Hecke groups Minimal polynomial Constant term Hecke groups Subgroups |
Issue Date: | Mar-2013 |
Publisher: | Springer International Publishing |
Citation: | Demirci, M. ve Cangül, İ. N. (2013). “The constant term of the minimal polynomial of cos(2 pi/n) over Q”. Fixed Point Theory and Applications, 2013. |
Abstract: | Let H(lambda(q)) be the Hecke group associated to lambda(q) = 2cos pi/q for q >= 3 integer. In this paper, we determine the constant term of the minimal polynomial of lambda(q) denoted by P-q*(x). |
URI: | https://doi.org/10.1186/1687-1812-2013-77 https://fixedpointtheoryandalgorithms.springeropen.com/articles/10.1186/1687-1812-2013-77 http://hdl.handle.net/11452/32616 |
ISSN: | 1687-1812 |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Demirci_Cangül_2013.pdf | 260.23 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License