Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/32732
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2023-05-22T11:02:40Z | - |
dc.date.available | 2023-05-22T11:02:40Z | - |
dc.date.issued | 2013 | - |
dc.identifier.citation | Yılmaz, E. (2013). "An expert system based on fisher score and LS-SVM for cardiac arrhythmia diagnosis". Computational and Mathematical Methods in Medicine, 2013. | en_US |
dc.identifier.issn | 1748-670X | - |
dc.identifier.issn | 1748-6718 | - |
dc.identifier.uri | https://doi.org/10.1155/2013/849674 | - |
dc.identifier.uri | https://www.hindawi.com/journals/cmmm/2013/849674/ | - |
dc.identifier.uri | http://hdl.handle.net/11452/32732 | - |
dc.description.abstract | An expert system having two stages is proposed for cardiac arrhythmia diagnosis. In the first stage, Fisher score is used for feature selection to reduce the feature space dimension of a data set. The second stage is classification stage in which least squares support vector machines classifier is performed by using the feature subset selected in the first stage to diagnose cardiac arrhythmia. Performance of the proposed expert system is evaluated by using an arrhythmia data set which is taken from UCI machine learning repository. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Hindawi Ltd | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Atıf Gayri Ticari Türetilemez 4.0 Uluslararası | tr_TR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Mathematical & computational biology | en_US |
dc.subject | Diseases | en_US |
dc.subject | Expert systems | en_US |
dc.subject | Cardiac arrhythmia | en_US |
dc.subject | Data set | en_US |
dc.subject | Feature space | en_US |
dc.subject | Feature space | en_US |
dc.subject | Fisher score | en_US |
dc.subject | Least squares support vector machines | en_US |
dc.subject | UCI machine learning repository | en_US |
dc.subject | Support vector machines | en_US |
dc.subject.mesh | Algorithms | en_US |
dc.subject.mesh | Arrhythmias, cardiac | en_US |
dc.subject.mesh | Artificial intelligence | en_US |
dc.subject.mesh | Computational biology | en_US |
dc.subject.mesh | Databases, factual | en_US |
dc.subject.mesh | Diagnosis, computer-assisted | en_US |
dc.subject.mesh | Electrocardiography | en_US |
dc.subject.mesh | Expert systems | en_US |
dc.subject.mesh | Humans | en_US |
dc.subject.mesh | Least-squares analysis | en_US |
dc.subject.mesh | Support vector machines | en_US |
dc.title | An expert system based on fisher score and LS-SVM for cardiac arrhythmia diagnosis | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000321464200001 | tr_TR |
dc.identifier.scopus | 2-s2.0-84880175539 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Mühendislik Fakültesi/Elektrik Elektronik Mühendisliği Bölümü. | tr_TR |
dc.identifier.volume | 2013 | tr_TR |
dc.relation.journal | Computational and Mathematical Methods in Medicine | en_US |
dc.contributor.buuauthor | Yılmaz, Ersen | - |
dc.contributor.researcherid | G-3554-2013 | tr_TR |
dc.identifier.pubmed | 23861726 | tr_TR |
dc.subject.wos | Mathematical & computational biology | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.indexed.pubmed | PubMed | en_US |
dc.wos.quartile | Q3 | en_US |
dc.contributor.scopusid | 56965095300 | tr_TR |
dc.subject.scopus | Electrocardiograph; Compressed Sensing; Compression | en_US |
dc.subject.emtree | Article | en_US |
dc.subject.emtree | Clinical evaluation | en_US |
dc.subject.emtree | Diagnostic accuracy | en_US |
dc.subject.emtree | Expert system | en_US |
dc.subject.emtree | Fisher score | en_US |
dc.subject.emtree | Heart arrhythmia | en_US |
dc.subject.emtree | Machine learning | en_US |
dc.subject.emtree | Support vector machine | en_US |
dc.subject.emtree | Algorithm | en_US |
dc.subject.emtree | Arrhythmias, cardiac | en_US |
dc.subject.emtree | Artificial intelligence | en_US |
dc.subject.emtree | Biology | en_US |
dc.subject.emtree | Computer assisted diagnosis | en_US |
dc.subject.emtree | Electrocardiography | en_US |
dc.subject.emtree | Evaluation study | en_US |
dc.subject.emtree | Factual database | en_US |
dc.subject.emtree | Human | en_US |
dc.subject.emtree | Regression analysis | en_US |
dc.subject.emtree | Statistics and numerical data | en_US |
dc.subject.emtree | Support vector machine | en_US |
dc.subject.emtree | Computer assisted diagnosis | en_US |
dc.subject.emtree | Statistics | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Yılmaz_vd_2013.pdf | 1.28 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License