Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/32882
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2023-05-30T11:06:24Z | - |
dc.date.available | 2023-05-30T11:06:24Z | - |
dc.date.issued | 2013 | - |
dc.identifier.citation | Gökdağ, H. (2013). “Comparison of ABC, CPSO, DE and GA algorithms in FRF based structural damage identification”. Materials Testing, 55(10), 796-802. | en_US |
dc.identifier.issn | 0025-5300 | - |
dc.identifier.uri | https://doi.org/10.3139/120.110503 | - |
dc.identifier.uri | https://www.degruyter.com/document/doi/10.3139/120.110503/html | - |
dc.identifier.uri | http://hdl.handle.net/11452/32882 | - |
dc.description.abstract | In this contribution, performances of well-known population based algorithms, the artificial bee colony (ABC), contemporary particle swarm optimization (CPSO), genetic algorithm (GA), and differential evolution (DE) are compared in a basic model for damage identification (DI). DI is modeled as an inverse problem with the objective function based on the difference of the frequency response functions (FRF) computed by the finite element model of the structure and the reference data measured from damaged structure. Damage parameters are determined solving the problem with the aforementioned algorithms. It was observed that DE is the best one of a given number of function evaluations and gives the most accurate results in spite of noise interference to the reference data. According to the relevant literature, this is the first study including a comparison of these algorithms in an FRF based DI study. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Walter De Gruyter | de |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Materials science | en_US |
dc.subject | Particle swarm | en_US |
dc.subject | Differential evolution | en_US |
dc.subject | Crack detection | en_US |
dc.subject | Frequency | en_US |
dc.subject | Damage detection | en_US |
dc.subject | Finite element method | en_US |
dc.subject | Frequency response | en_US |
dc.subject | Genetic algorithms | en_US |
dc.subject | Inverse problems | en_US |
dc.subject | Optimization | en_US |
dc.subject | Particle swarm optimization (PSO) | en_US |
dc.subject | Structural analysis | en_US |
dc.subject | Artificial bee colonies (ABC) | en_US |
dc.subject | Damage identification | en_US |
dc.subject | Differential evolution | en_US |
dc.subject | Frequency response functions | en_US |
dc.subject | Noise interference | en_US |
dc.subject | Objective functions | en_US |
dc.subject | Population-based algorithm | en_US |
dc.subject | Structural damage identification | en_US |
dc.subject | Evolutionary algorithms | en_US |
dc.title | Comparison of ABC, CPSO, DE and GA algorithms in FRF based structural damage identification | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000327005400011 | tr_TR |
dc.identifier.scopus | 2-s2.0-84886511829 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü. | tr_TR |
dc.contributor.orcid | 0000-0003-3070-6365 | tr_TR |
dc.identifier.startpage | 796 | tr_TR |
dc.identifier.endpage | 802 | tr_TR |
dc.identifier.volume | 55 | tr_TR |
dc.identifier.issue | 10 | tr_TR |
dc.relation.journal | Materials Testing | en_US |
dc.contributor.buuauthor | Gökdaǧ, Hakan | - |
dc.contributor.researcherid | F-3233-2016 | tr_TR |
dc.subject.wos | Materials science, characterization & testing | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q4 | en_US |
dc.contributor.scopusid | 23012197200 | tr_TR |
dc.subject.scopus | Damage Identification; Mode Shape; Structural Analysis | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.