Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/33030
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2023-06-13T12:38:14Z-
dc.date.available2023-06-13T12:38:14Z-
dc.date.issued2019-11-
dc.identifier.citationAltınkaya, S. ve Yalçın, S. (2019). ''On the (p, q)-Lucas polynomial coefficient bounds of the bi-univalent function class sigma''. Boletin de la Sociedad Matematica Mexicana, 25(3), 567-575.en_US
dc.identifier.issn1405-213X-
dc.identifier.issn2296-4495-
dc.identifier.urihttps://doi.org/10.1007/s40590-018-0212-z-
dc.identifier.urihttps://link.springer.com/article/10.1007/s40590-018-0212-z-
dc.identifier.urihttp://hdl.handle.net/11452/33030-
dc.description.abstractThe idea of the present paper stems from the work of Lee and Ac (J Appl Math 2012:1-18, 2012). We want to remark explicitly that, in our article, by using the (p, q)-Lucas polynomials, our methodology builds a bridge, to our knowledge not previously well known, between the Theory of Geometric Functions and that of Special Functions, which are usually considered as very different fields. Thus, we aim at introducing a new class of bi-univalent functions defined through the (p, q)-Lucas polynomials. Furthermore, we derive coefficient inequalities and obtain Fekete-Szego problem for this new function class.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject(p, q)-Lucas polynomialsen_US
dc.subjectCoefficient boundsen_US
dc.subjectBi-univalent functionsen_US
dc.subjectSubclassen_US
dc.subjectFibonaccien_US
dc.titleOn the (p, q)-Lucas polynomial coefficient bounds of the bi-univalent function class sigmaen_US
dc.typeArticleen_US
dc.identifier.wos000500987400008tr_TR
dc.identifier.scopus2-s2.0-85059840878tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentBursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik ve Analiz ve Fonksiyon Teorisi Bölümü.tr_TR
dc.contributor.orcid0000-0002-7950-8450tr_TR
dc.contributor.orcid0000-0002-0243-8263tr_TR
dc.identifier.startpage567tr_TR
dc.identifier.endpage575tr_TR
dc.identifier.volume25tr_TR
dc.identifier.issue3tr_TR
dc.relation.journalBoletin De La Sociedad Matematica Mexicanaen_US
dc.contributor.buuauthorAltınkaya, Şahsene-
dc.contributor.buuauthorYalçın, Sibel-
dc.contributor.researcheridAAA-8330-2021tr_TR
dc.contributor.researcheridAAG-5646-2021tr_TR
dc.contributor.researcheridAAE-9745-2020tr_TR
dc.contributor.researcheridABC-6175-2020tr_TR
dc.subject.wosMathematicsen_US
dc.indexed.wosESCIen_US
dc.indexed.scopusScopusen_US
dc.contributor.scopusid56543332200tr_TR
dc.contributor.scopusid56207790300tr_TR
dc.subject.scopusLucas Numbers; Fibonacci; Numberen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.