Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/33030
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2023-06-13T12:38:14Z | - |
dc.date.available | 2023-06-13T12:38:14Z | - |
dc.date.issued | 2019-11 | - |
dc.identifier.citation | Altınkaya, S. ve Yalçın, S. (2019). ''On the (p, q)-Lucas polynomial coefficient bounds of the bi-univalent function class sigma''. Boletin de la Sociedad Matematica Mexicana, 25(3), 567-575. | en_US |
dc.identifier.issn | 1405-213X | - |
dc.identifier.issn | 2296-4495 | - |
dc.identifier.uri | https://doi.org/10.1007/s40590-018-0212-z | - |
dc.identifier.uri | https://link.springer.com/article/10.1007/s40590-018-0212-z | - |
dc.identifier.uri | http://hdl.handle.net/11452/33030 | - |
dc.description.abstract | The idea of the present paper stems from the work of Lee and Ac (J Appl Math 2012:1-18, 2012). We want to remark explicitly that, in our article, by using the (p, q)-Lucas polynomials, our methodology builds a bridge, to our knowledge not previously well known, between the Theory of Geometric Functions and that of Special Functions, which are usually considered as very different fields. Thus, we aim at introducing a new class of bi-univalent functions defined through the (p, q)-Lucas polynomials. Furthermore, we derive coefficient inequalities and obtain Fekete-Szego problem for this new function class. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | (p, q)-Lucas polynomials | en_US |
dc.subject | Coefficient bounds | en_US |
dc.subject | Bi-univalent functions | en_US |
dc.subject | Subclass | en_US |
dc.subject | Fibonacci | en_US |
dc.title | On the (p, q)-Lucas polynomial coefficient bounds of the bi-univalent function class sigma | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000500987400008 | tr_TR |
dc.identifier.scopus | 2-s2.0-85059840878 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Bursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik ve Analiz ve Fonksiyon Teorisi Bölümü. | tr_TR |
dc.contributor.orcid | 0000-0002-7950-8450 | tr_TR |
dc.contributor.orcid | 0000-0002-0243-8263 | tr_TR |
dc.identifier.startpage | 567 | tr_TR |
dc.identifier.endpage | 575 | tr_TR |
dc.identifier.volume | 25 | tr_TR |
dc.identifier.issue | 3 | tr_TR |
dc.relation.journal | Boletin De La Sociedad Matematica Mexicana | en_US |
dc.contributor.buuauthor | Altınkaya, Şahsene | - |
dc.contributor.buuauthor | Yalçın, Sibel | - |
dc.contributor.researcherid | AAA-8330-2021 | tr_TR |
dc.contributor.researcherid | AAG-5646-2021 | tr_TR |
dc.contributor.researcherid | AAE-9745-2020 | tr_TR |
dc.contributor.researcherid | ABC-6175-2020 | tr_TR |
dc.subject.wos | Mathematics | en_US |
dc.indexed.wos | ESCI | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.contributor.scopusid | 56543332200 | tr_TR |
dc.contributor.scopusid | 56207790300 | tr_TR |
dc.subject.scopus | Lucas Numbers; Fibonacci; Number | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.