Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/33045
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGajewski, Mariusz-
dc.contributor.authorBatalla, Jordi Mongay-
dc.contributor.authorLevi, Albert-
dc.contributor.authorMavromoustakis, Constandinos X.-
dc.contributor.authorMastorakis, George-
dc.date.accessioned2023-06-15T10:30:32Z-
dc.date.available2023-06-15T10:30:32Z-
dc.date.issued2019-07-20-
dc.identifier.citationGajewski, M. vd. (2019). ''Two-tier anomaly detection based on traffic profiling of the home automation system''. Computer Networks, 158, 46-60.en_US
dc.identifier.issn1389-1286-
dc.identifier.issn1872-7069-
dc.identifier.urihttps://doi.org/10.1016/j.comnet.2019.04.013-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S1389128618311587-
dc.identifier.urihttp://hdl.handle.net/11452/33045-
dc.description.abstractSmart building equipment and automation systems often become a target of attacks and are used for attacking other targets located out of the Home Area Network. Attacks are often related to changes in traffic volume, disturbed packet flow or excessive energy consumption. Their symptoms can be recognized and interpreted locally, using software agent at Home Gateway. Although anomalies are detected locally at the Home Gateway, they can be exploited globally. Thus, it is significantly important to detect global attack attempts through anomalies correlation. Our proposal in this paper is the involvement of the Network Operator in Home Area Network security. Our paper describes a novel strategy for anomaly detection that consists of shared responsibilities between user and network provider. The proposed two-tier Intrusion Detection System uses a machine learning method for classifying the monitoring records and searching suspicious anomalies across the network at the service provider's data center. Result show that local anomaly detection combined with anomaly correlation at the service providers level can provide reliable information on the most frequent IoT devices misbehavior which may be caused by infection.en_US
dc.description.sponsorshipNational Centre for Research and Development (NCBiR) in Polanden_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectComputer scienceen_US
dc.subjectEngineeringen_US
dc.subjectTelecommunicationsen_US
dc.subjectHome gatewayen_US
dc.subjectWireless sensor networksen_US
dc.subjectSmart homeen_US
dc.subjectAnomaly detectionen_US
dc.subjectInternet of thingsen_US
dc.subjectIntrusion-detectionen_US
dc.subjectInterneten_US
dc.subjectAutomationen_US
dc.subjectComputer crimeen_US
dc.subjectEnergy utilizationen_US
dc.subjectEnterprise resource planningen_US
dc.subjectGateways (computer networks)en_US
dc.subjectHome networksen_US
dc.subjectInternet of thingsen_US
dc.subjectInternet service providersen_US
dc.subjectIntrusion detectionen_US
dc.subjectLearning systemsen_US
dc.subjectNetwork securityen_US
dc.subjectSearch enginesen_US
dc.subjectSoftware agentsen_US
dc.subjectWireless sensor networksen_US
dc.subjectAnomaly correlationsen_US
dc.subjectBuilding equipmentsen_US
dc.subjectHome automation systemsen_US
dc.subjectHome gatewayen_US
dc.subjectIntrusion detection systemsen_US
dc.subjectMachine learning methodsen_US
dc.subjectShared responsibilityen_US
dc.subjectSmart homesen_US
dc.subjectAnomaly detectionen_US
dc.titleTwo-tier anomaly detection based on traffic profiling of the home automation systemen_US
dc.typeArticleen_US
dc.identifier.wos000472243200004tr_TR
dc.identifier.scopus2-s2.0-85065068872tr_TR
dc.relation.tubitak117E017tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentBursa Uludağ Üniversitesi/Mühendislik Fakültesi/Bilgisayar Mühendisliği/Siber Güvenlik Bölümü.tr_TR
dc.contributor.orcid0000-0001-5739-1784tr_TR
dc.identifier.startpage46tr_TR
dc.identifier.endpage60tr_TR
dc.identifier.volume158tr_TR
dc.relation.journalComputer Networksen_US
dc.contributor.buuauthorTogay, Cengiz-
dc.contributor.researcheridAAG-9038-2020tr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.relation.collaborationSanayitr_TR
dc.subject.wosComputer science, hardware & architectureen_US
dc.subject.wosComputer science, information systemsen_US
dc.subject.wosEngineering, electrical & electronicen_US
dc.subject.wosTelecommunicationsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ4en_US
dc.contributor.scopusid15065979500tr_TR
dc.subject.scopusDenial-Of-Service Attack; DDoS; Attacken_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.