Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/33135
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2023-06-23T07:35:02Z-
dc.date.available2023-06-23T07:35:02Z-
dc.date.issued2013-04-
dc.identifier.citationKaya, A. A. (2013). “Prediction of giant magneto-impedance effect in amorphous glass-coated micro-wires using artificial neural network”. Journal of inequalities and applications, 2013.en_US
dc.identifier.issn1029-242X-
dc.identifier.issnhttps://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-216-
dc.identifier.urihttps://doi.org/10.1186/1029-242X-2013-216-
dc.identifier.urihttp://hdl.handle.net/11452/33135-
dc.description.abstractThis paper deals with a prediction of a giant magneto-impedance (GMI) effect on amorphous micro-wires using an artificial neural network (ANN). The prediction model has three hidden layers with fifteen neurons and full connectivity between them. The ANN model is used to predict the GMI effect for Co70.3Fe3.7B10Si13Cr3 glass-coated micro-wire. The results show that the ANN model has a 98.99% correlation with experimental data.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMathematicsen_US
dc.subjectGiant magneto-impedance effecten_US
dc.subjectAmorphous micro-wiresen_US
dc.subjectModelingen_US
dc.subjectArtificial neural networken_US
dc.subjectMagnetoimpedanceen_US
dc.subjectSensorsen_US
dc.titlePrediction of giant magneto-impedance effect in amorphous glass-coated micro-wires using artificial neural networken_US
dc.typeArticleen_US
dc.identifier.wos000318843400001tr_TR
dc.identifier.scopus2-s2.0-84894620389tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Fizik Anabilim Dalı.tr_TR
dc.contributor.orcid0000-0002-4467-3456tr_TR
dc.identifier.volume2013tr_TR
dc.relation.journalJournal of Inequalities and Applicationsen_US
dc.contributor.buuauthorKaya, Aslı Ayten-
dc.contributor.researcheridW-1759-2017tr_TR
dc.subject.wosMathematics, applieden_US
dc.subject.wosMathematicsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ2en_US
dc.contributor.scopusid55779992300tr_TR
dc.subject.scopusMagnetic Sensors; Electric Impedance; Ribbonsen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Kaya_2013.pdf211.58 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons