Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/33147
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarpuz, Eylem Güzel-
dc.contributor.authorAteş, Fırat-
dc.contributor.authorÇevik, Ahmet Sinan-
dc.date.accessioned2023-06-23T10:21:25Z-
dc.date.available2023-06-23T10:21:25Z-
dc.date.issued2013-03-26-
dc.identifier.citationKarpuz, E. G. vd. (2013). “The graph based on Grobner-Shirshov bases of groups”. Fixed Point Theory and Applications, 2013.en_US
dc.identifier.issn1687-1812-
dc.identifier.urihttps://doi.org/10.1186/1687-1812-2013-71-
dc.identifier.urihttps://fixedpointtheoryandalgorithms.springeropen.com/articles/10.1186/1687-1812-2013-71-
dc.identifier.urihttp://hdl.handle.net/11452/33147-
dc.description.abstractLet us consider groups G(1) = Z(k) * (Z(m) * Z(n)), G(2) = Z(k) x (Z(m) * Z(n)), G(3) = Z(k) * (Z(m) x Z(n)), G(4) = (Z(k) * Z(l)) * (Z(m) * Z(n)) and G(5) = (Z(k) * Z(l)) x (Z(m) * Z(n)), where k, l, m, n = 2. In this paper, by defining a new graph Gamma(G(i)) based on the Grobner-Shirshov bases over groups G(i), where 1 <= i <= 5, we calculate the diameter, maximum and minimum degrees, girth, chromatic number, clique number, domination number, degree sequence and irregularity index of Gamma(G(i)). Since graph theoretical studies (including such above graph parameters) consist of some fixed point techniques, they have been applied in such fields as chemistry (in the meaning of atoms, molecules, energy etc.) and engineering (in the meaning of signal processing etc.), game theory and physics. In addition, the Grobner-Shirshov basis and the presentations of algebraic structures contain a mixture of algebra, topology and geometry within the purposes of this journal.en_US
dc.description.sponsorshipResearch Project Offices (BAP) of their universities in Turkeyen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectGraphsen_US
dc.subjectGrobner-Shirshov basesen_US
dc.subjectGroup presentationen_US
dc.subjectZero-divisor graphen_US
dc.subjectInverse-semigroupsen_US
dc.subjectCayley-graphsen_US
dc.subjectBraid groupen_US
dc.subjectRingen_US
dc.subjectExtensionsen_US
dc.subjectGeneratorsen_US
dc.subjectMathematicsen_US
dc.titleThe graph based on Grobner-Shirshov bases of groupsen_US
dc.typeArticleen_US
dc.identifier.wos000326449400001tr_TR
dc.identifier.scopus2-s2.0-84877081840tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı.tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.identifier.volume2013tr_TR
dc.relation.journalFixed Point Theory and Applicationsen_US
dc.contributor.buuauthorCangül, İsmail Naci-
dc.contributor.researcheridJ-3505-2017tr_TR
dc.contributor.researcheridABA-6206-2020tr_TR
dc.relation.collaborationYurt içitr_TR
dc.subject.wosMathematics, applieden_US
dc.subject.wosMathematicsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.contributor.scopusid57189022403tr_TR
dc.subject.scopusFree Associative Algebras; Mathematics; Irreducible Moduleen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Cangül_vd_2013.pdf330.62 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons