Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/33386
Title: 2D Magnetic texture analysis of Co-Cu films
Authors: Bayırlı, Mehmet
Karaağaç, Öznur
Koçkar, Hakan
Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Fizik Bölümü.
Alper, Mursel
AAG-8795-2021
7005719283
Keywords: Chemistry
Physics
2D Magnetic texture orientation
Co-Cu films
Magnetic easy-axis distribution
Numerical analyses
Structural analysis
Dependence
Media
Ph
Issue Date: 1-May-2017
Publisher: Walter de Gruyter Gmbh
Citation: Bayırlı, M. vd. (2017). ''2D Magnetic texture analysis of Co-Cu films''. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 72(5), 449-455.
Abstract: The magnetic textures for the produced magnetic materials are important concepts in accordance with technical applications. Therefore, the aim of this article is to determine 2D magnetic textures of electrodeposited Co-Cu films by the measurement of hysteresis loops at the incremented angles. For that, Co-Cu films were deposited with different Co2+ in the electrolyte. In addition, the easy-axis orientation in the films from the squareness values of the angles, M-p(beta) obtained by the hysteresis loops have been numerically studied using the Fourier series analysis. The differences observed in the magnetic easy-axis distributions were attributed to changes of the incorporation of Co2+ in the films with the change of Co2+ in the electrolyte. The coefficients of Fourier series (A(0) and A(2n)) were also computed for 2D films. It is seen that a systematic and small decrease in A(0) and an obvious decrease in A(2n) (n = 1) were observed with increasing incorporated Co in the films. Results imply that interactions cause slightly demagnetization effect accordance with higher incorporation of Co in the films. Furthermore, the crystal structure of the Co-Cu films analysed by X-ray diffraction revealed that the films have dominantly face-centred cubic structure. Film contents analysed by energy-dispersive X-ray spectroscopy and film morphologies observed by scanning electron microscope also support the magnetic texture analysis results found by numerical computation.
URI: https://doi.org/10.1515/zna-2016-0441
https://www.degruyter.com/document/doi/10.1515/zna-2016-0441/html
http://hdl.handle.net/11452/33386
ISSN: 0932-0784
1865-7109
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.