Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/33514
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Anbar, Adem | - |
dc.contributor.author | Akdoğan, Yunus Emre | - |
dc.date.accessioned | 2023-08-17T05:48:38Z | - |
dc.date.available | 2023-08-17T05:48:38Z | - |
dc.date.issued | 2023-06-09 | - |
dc.identifier.citation | Akdoğan, Y. E. (2023). Sosyal medyanın finansal piyasalara etkisi ve hisse senedi fiyat öngörülerinde kullanılması: Borsa İstanbul örneği. Yayınlanmamış doktora tezi. Bursa Uludağ Üniversitesi Sosyal Bilimler Enstitüsü. | tr_TR |
dc.identifier.uri | http://hdl.handle.net/11452/33514 | - |
dc.description.abstract | Dijital dönüşüm, sosyal yaşamın geçmişte verileştirilmesinin en zor alanlarıyla ilgili deneysel ve gözlemsel verilerine, makroskobik ve mikroskobik ölçekte ulaşmak için benzeri görülmemiş fırsatlar sunmaktadır. Bu bağlamda sosyal bilimler açısından dijital çağın en önemli veri kaynaklarından biri sosyal medya platformlarıdır. Bu çalışmada, geleneksel finansın genel kabul görmüş “tam bilgi”, “rasyonel insan” ve “izole birey” varsayımları yerine, eksik bilgisini tamamlamaya çalışan, sınırlı ve ekolojik rasyonaliteye sahip, sosyal çevresinin ve duygularının karar süreçlerinde pay sahibi olabildiği bir insan modelini esas alarak, bireysel yatırımcıların davranışlarını Twitter’dan toplanan büyük veri ile yapay zekâ ve makine öğrenmesi yöntemlerini kullanarak çözümlemek amaçlanmaktadır. Bu amaçla Twitter kullanıcılarının 01.01.2012-28.02.2020 döneminde paylaştığı tweetler toplanmıştır. Tweetlerin Borsa İstanbul (BIST) pay piyasası ile ilgili olup olmadığını belirlemek için hem anahtar kelime tabanlı hem makine öğrenmesi tabanlı iki farklı bağlam sınıflandırıcı geliştirilmiştir. Makine öğrenmesi tabanlı bağlam sınıflandırıcı derin öğrenme yaklaşımlarından Gated Recurrent Units (GRU) yöntemi ile eğitilmiş ve %98 sınıflandırma başarısı elde edilmiştir. Tweetlerin fikri ve duygusal yöneliminin pozitif, negatif ya da nötr olarak sınıflandırılabilmesi için fikir ve duygu[sentiment] sınıflandırıcısı, ön eğitimli Bidirectional Encoder Representations fromTransformers (BERT) yöntemiyle eğitilmiş ve pozitif ve negatif sınıflar için %91, nötr sınıf için %89 sınıflandırma başarısı elde edilmiştir. Twitter verilerinden elde edilen öz nitelikler ile Borsa İstanbul pay piyasası endekslerinden BIST30, BIST100, BISTTUM, BISTSINAİ, BIST TEKNOLOJİ, BIST HİZMETLER, BIST MALİ arasındaki ilişki makine öğrenmesi yöntemlerinden Lineer Regresyon, Lasso Regresyon, Rassal Orman ve XGBoost ile analiz edilmiştir. Analiz sonucunda BIST 100 endeksinin açılış değerindeki değişimin %91’inin, işlem hacmindeki değişimin %63’ünün ve volatilitedeki değişimin %67’sinin tweetlerden elde edilen bilişsel, davranışsal ve sosyal öznitelikler ile açıklanabildiği bulgusuna ulaşılmıştır. Benzer bulgular diğer endeksler için de geçerlidir. | tr_TR |
dc.description.abstract | Digital transformation offers unprecedented opportunities to access empirical and observational data on the macroscopic and microscobic scales of social life in areas that were most difficult to datafication in the past. In this context, one of the most important data sources of the digital age in terms of social sciences is social media platforms. In this study, instead of the generally accepted "perfect information", "rational human" and "isolated individual" assumptions of traditional finance, a human model that tries to complete the missing information, has bounded and ecological rationality, and whose social network and emotions can have an effect in the decision processes, is based on an individual model. It is aimed to analyze the behavior of investors by using big data collected from Twitter, artificial intelligence and machine learning methods. For this purpose, tweets shared by Twitter users between 01.01.2012-28.02.2020 were collected. Two different context classifiers, both keyword-based and machine learning-based, have been developed to determine whether the tweets are related to the Borsa İstanbul Equity Market. The machine learning-based context classifier was trained with the Gated Recurrent Units (GRU) method, one of the deep learning approaches, and 98% classification success was achieved. In order to classify the sentiment of tweets as positive, negative or neutral, thesentiment classifier was trained with the pre-trained BERT method, and an accuracy of91% for positive and negative classes and 89% for neutral class was achieved. The relationship between the features obtained from Twitter data and the BIST30, BIST100, BISTTUM, BIST SERVICES, BIST FINANCIAL, BIST INDUSTRY, BISTTECHNOLOGY indices was analyzed by machine learning methods Linear Regression, Lasso Regression, Random Forest and XGBoost methods. As a result of the analysis, it was found that 91% of the change in the opening values of the BIST 100 index, 63% of the change in the trading volume and 67% of the change in volatility can be explained by cognitive, behavioral and social features obtained from the tweets. Similar findings are also valid for other indices. | en_US |
dc.description.sponsorship | Ulusal Yüksek Başarımlı Hesaplama Merkezi (UHeM) - 4007652020 | tr_TR |
dc.format.extent | XVII, 374 sayfa | tr_TR |
dc.language.iso | tr | tr_TR |
dc.publisher | Bursa Uludağ Üniversitesi | tr_TR |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Atıf 4.0 Uluslararası | tr_TR |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Davranışsal finans | tr_TR |
dc.subject | Borsa İstanbul | tr_TR |
dc.subject | Yapay zekâ | tr_TR |
dc.subject | Makine öğrenmesi | tr_TR |
dc.subject | Büyük veri | tr_TR |
dc.subject | Duygu ve fikir analizi | tr_TR |
dc.subject | Sosyal medya analizi | tr_TR |
dc.subject | Algoritmik finansal işlemler | tr_TR |
dc.subject | Behavioral finance | en_US |
dc.subject | Borsa Istanbul | en_US |
dc.subject | Artificial intelligence | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Big data | en_US |
dc.subject | Data analytics | en_US |
dc.subject | Sentiment analysis | en_US |
dc.subject | Social media analysis | en_US |
dc.subject | Algoritmic trading | en_US |
dc.title | Sosyal medyanın finansal piyasalara etkisi ve hisse senedi fiyat öngörülerinde kullanılması: Borsa İstanbul örneği | tr_TR |
dc.title.alternative | The impact of social media on financial markets and using stock price prediction: Case of Borsa İstanbul | en_US |
dc.type | doctoralThesis | en_US |
dc.relation.tubitak | TÜBİTAK ULAKBİM - TRUBA | tr_TR |
dc.relation.publicationcategory | Tez | tr_TR |
dc.contributor.department | Bursa Uludağ Üniversitesi/Sosyal Bilimler Enstitüsü/İşletme Anabilim Dalı/Muhasebe ve Finansman Bilim Dalı. | tr_TR |
dc.contributor.orcid | 0000-0002-1761-2869 | tr_TR |
Appears in Collections: | Sosyal Bilimler Doktora Tezleri / PhD Dissertations |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Yunus_Emre_Akdoğan.pdf | 6.15 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License