Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/33520
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorAydın, Z. Berna-
dc.contributor.authorGündoğdu, Edanur-
dc.date.accessioned2023-08-17T06:58:38Z-
dc.date.available2023-08-17T06:58:38Z-
dc.date.issued2023-07-12-
dc.identifier.citationGündoğdu, E. (2023). Veri madenciliği çerçevesinde yapay sinir ağları ve birliktelik kuralı analizi üzerine borsa İstanbul 30 endeksinde bir uygulama. Yayınlanmamış yüksek lisans tezi. Bursa Uludağ Üniversitesi Sosyal Bilimler Enstitüsü.tr_TR
dc.identifier.urihttp://hdl.handle.net/11452/33520-
dc.description.abstractVeriye ulaşılabilirliğin oldukça kolay olduğu gelişen bilgi ve teknoloji çağında, büyük boyutlu veri yığınlarının işlenebilir hale getirilmesi ile anlamlı ve yararlı bilgiler kullanıcılara sunulmaktadır. Bu bağlamda ülkemizin ekonomik durumu ile doğrudan ilişkili olan ve aynı zamanda önemli derecede yatırımcıya sahip olan Borsa İstanbul Endeks verilerinden, çıkarımlar yapabilmek yatırımcılara yatırım kararı alırken yol gösterici olmaktadır. Bu araştırmanın amacı veri madenciliği tekniklerinden, yapay sinir ağları analizi ile BİST 30 endeksinin 2022 Aralık ayı değerlerini tahmin etmek ve birliktelik kuralı analizi kullanılarak BİST30 endeksinin birlikte hareket ettiği makroekonomik değişkenleri tespit etmektir. Araştırma 2018 Ocak ile 2022 Aralık ayını kapsamakta olup yapay sinir ağı analizinde girdi değişkeni olarak tüketici fiyat endeksi, para arzı, altın ons fiyatı, dolar kuru, euro kuru, mevduat faizi, finansal hizmetler güven endeksi, brent petrol seçilirken çıktı değişkeni olarak Borsa İstanbul 30 Endeksi seçilmiştir. Yapay sinir ağı analizi için MATLAB (R2021b) programı, birliktelik kuralı analizi için Weka 3.8.5 programı kullanılmıştır. Araştırma sonucunda yapay sinir ağları analizi ile üretilen tahmin değerleri gerçek değerler ile karşılaştırılmış ve tahmin değerlerinin gerçek değerlere çok yakın olduğu görülmüştür. Birliktelik kuralı analizinde ise makroekonomik değişkenler ve BİST 30 endeksi arasında birliktelikler üretildiği saptanmıştır.tr_TR
dc.description.abstractIn the age of information and technology, where access to data is quite easy, meaningful and useful information is provided to users by making large-sized datamasses processable.In this respect, making inferences from the Istanbul Stock Exchange Index data, which is directly related to the economic situation of ourcountry and also has a significant number of investors, guides investors in making their investment decisions.The aim of this research is top redict the December 2022 values of the BIST 30 index using artificial neural network analysis, one of the datamining techniques, and to identify the macro economic variables with which the BIST 30 index moves together using association rule analysis.There search coversthe period between January 2018 and December 2022. In the artificial neuralnet work analysis, consumer price index, moneys upply, gold ounce price, dolarexchange rate, euro exchange rate, deposit interest rate, financial servicesconfidence index, brent oil were selected as input variables, while Borsa Istanbul 30 Index was selected as output variable.MATLAB (R2021b) program was used for neural network analysis and Weka 3.8.5 program was used for association rule analysis. As a result of the research, the forecast values produced by artificial neural network analysis were compared with the actual values and it was observed that the forecast values were very close to the actual values. In the association rule analysis, it was determined that relationships were produced between macroeconomic variables and the BIST 30 index.en_US
dc.format.extentXIV, 107 sayfatr_TR
dc.language.isotrtr_TR
dc.publisherBursa Uludağ Üniversitesitr_TR
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectBüyük veritr_TR
dc.subjectVeri madenciliğitr_TR
dc.subjectYapay sinir ağlarıtr_TR
dc.subjectBirliktelik kuralı analizitr_TR
dc.subjectBig dataen_US
dc.subjectData miningen_US
dc.subjectArtificial neural networksen_US
dc.subjectAssociation rule analysisen_US
dc.titleVeri madenciliği çerçevesinde yapay sinir ağları ve birliktelik kuralı analizi üzerine borsa İstanbul 30 endeksinde bir uygulamatr_TR
dc.title.alternativeAn application on artificial neural networks and association rule analysis in the framework of data mining on the stock exchange Istanbul 30 indexen_US
dc.typemasterThesisen_US
dc.relation.publicationcategoryTeztr_TR
dc.contributor.departmentBursa Uludağ Üniversitesi/Sosyal Bilimler Enstitüsü/Ekonometri Anabilim Dalı/İstatistik Bilim Dalı.tr_TR
dc.contributor.orcid0009-0005-5390-901Xtr_TR
Appears in Collections:Sosyal Bilimler Yüksek Lisans Tezleri / Master Degree

Files in This Item:
File Description SizeFormat 
Edanur_Gündoğdu.pdf1.23 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons