Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/33523
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorIşığıçok, Erkan-
dc.contributor.authorErgün, Oktay-
dc.date.accessioned2023-08-17T07:17:31Z-
dc.date.available2023-08-17T07:17:31Z-
dc.date.issued2023-05-24-
dc.identifier.citationErgün, O. (2023). Makine öğrenmesi algoritmaları ile müşteri segmentasyonu ve Hepsiburada e-ticaret platformu üzerine bir uygulama. Yayınlanmamış yüksek lisans tezi. Bursa Uludağ Üniversitesi Sosyal Bilimler Enstitüsü.tr_TR
dc.identifier.urihttp://hdl.handle.net/11452/33523-
dc.description.abstractE-ticaret, geleneksel ticaret yöntemlerinin teknolojik gelişmeler sayesinde günümüze uyarlanmış halidir. Geçtiğimiz yıllarda Covid-19 pandemisinin de etkisiyle e-ticaret hızla büyümüştür ve e-ticaretteki bu büyüme hala devam etmektedir. Bu hızlı büyüme, işletmelere müşterilerini anlama ve müşterilerine özel ürün ve hizmet önerileri sunma ihtiyacını birlikte getirmiştir. Bu ihtiyaç doğrultusunda, işletmeler müşteri segmentasyonu yöntemi ile müşterilerini belirli gruplara ayırabilmektedir. Belirlenen her bir grubun karakteristik yapıları tespit edilerek bu gruplara özel ürün ve hizmet önerileri sunulabilmektedir. Bu sayede uzun vadede müşteri aidiyetinin sağlanması ve işletmenin karlılığının artması sağlanabilmektedir. Bu tez çalışmasında, 2022 yılı içerisinde Hepsiburada e-ticaret platformundan seçilen yaklaşık 5.000 kullanıcının 9ana kategoriye ait toplamda 72.863 adet ürün siparişinden oluşan alışveriş verileri alınmıştır. Bu veri kümesinin betimsel istatistikleri özetlenmiştir ve uygulama öncesinde veri önişleme işlemleri uygulanmıştır. Sonrasında temel bileşenler analizi vek-ortalamalar makine öğrenmesi algoritmaları ile müşteri segmentasyonu işlemi gerçekleştirilmiştir. Yapılan analiz sonucunda kullanıcılar 7 farklı kümeye bölünmüştür ve her bir kümenin alışveriş alışkanlıkları ayrıntılı bir şekilde incelenmiştir.tr_TR
dc.description.abstractE-commerce is the adaptation of traditional commerce methods to the present day,regarding to technological possibilities. In the past years, e-commerce has grown rapidly due to the Covid-19 pandemic, and this growth in e-commerce still continues.This rapid growth has brought the need for businesses to understand their customersand offer them specific product and service recommendations. In order to meet withthis need, businesses can divide their customers into specific groups with the customer segmentation method. By determining the characteristics of each determined group,unique product and service suggestions can be offered to these groups. In this way,customer loyalty and business profitability can be increased in the long term. In this thesis, shopping data consists of 72,863 product orders belonging to 9 main categoriesof approximately 5,000 users selected from the Hepsiburada e-commerce platform in2022 were obtained. The descriptive statistics of this dataset were summarized, and data preprocessing was applied before the application. Afterward, the customersegmentation process was performed with principal component analysis and k-means machine learning algorithms. As a result of the analysis, users were divided into 7 different clusters, and the shopping habits of each cluster were examined in detail.en_US
dc.format.extentX, 92 sayfatr_TR
dc.language.isotrtr_TR
dc.publisherBursa Uludağ Üniversitesitr_TR
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMakine öğrenmesitr_TR
dc.subjectVeri analizitr_TR
dc.subjectVeri madenciliğitr_TR
dc.subjectE-ticarettr_TR
dc.subjectPythontr_TR
dc.subjectMüşteri segmentasyonutr_TR
dc.subjectK-ortalamalartr_TR
dc.subjectPCAtr_TR
dc.subjectMachine learningen_US
dc.subjectData analysisen_US
dc.subjectData miningen_US
dc.subjectE-commerceen_US
dc.subjectCustomer segmentationen_US
dc.subjectK-meansen_US
dc.titleMakine öğrenmesi algoritmaları ile müşteri segmentasyonu ve Hepsiburada e-ticaret platformu üzerine bir uygulamatr_TR
dc.title.alternativeCustomer segmentation with machine learning algorithms and an application of Hepsiburada e-commerce platformen_US
dc.typemasterThesisen_US
dc.relation.publicationcategoryTeztr_TR
dc.contributor.departmentBursa Uludağ Üniversitesi/Sosyal Bilimler Enstitüsü/Ekonometri Anabilim Dalı/İstatistik Bilim Dalı.tr_TR
dc.contributor.orcid0009-0003-7587-8694tr_TR
Appears in Collections:Sosyal Bilimler Yüksek Lisans Tezleri / Master Degree

Files in This Item:
File Description SizeFormat 
Oktay_Ergün.pdf10.97 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons