Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/33537
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2023-08-21T07:44:34Z | - |
dc.date.available | 2023-08-21T07:44:34Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | Tekcan, A. (2017). ''Indefinite quadratic forms and pell equations involving quadratic ideals''. Mathematical Reports, 19(2), 263-279. | en_US |
dc.identifier.issn | 1582-3067 | - |
dc.identifier.uri | http://imar.ro/journals/Mathematical_Reports/Pdfs/2017/2/9.pdf | - |
dc.identifier.uri | http://hdl.handle.net/11452/33537 | - |
dc.description.abstract | Let p equivalent to 1(mod 4) be a prime number, let gamma = P+root p/Q be a quadratic irrational, let I-gamma = [Q, P + root p] be a quadratic ideal and let F-gamma = (Q, 2P, -Q) be an indefinite quadratic form of discriminant Delta = 4p, where P and Q are positive integers depending on p. In this work, we first determined the cycle of I, and then proved that the right and left neighbors of F-gamma can be obtained from the cycle of I-gamma. Later we determined the continued fraction expansion of gamma, and then we showed that the continued fraction expansion of root P, the set of proper automorphisms of F-gamma, the fundamental solution of the Pell equation x(2) - py(2) = +/- 1 and the set of all positive integer solutions of the equation x(2) - py(2) = +/- p can be obtained from the continued fraction expansion of gamma. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Editura Acad Romane | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Mathematics | en_US |
dc.subject | Guadratic irrationals | en_US |
dc.subject | Guadratic ideals | en_US |
dc.subject | Guadratic forms | en_US |
dc.subject | Cycles | en_US |
dc.subject | Right and left neighbors | en_US |
dc.subject | Proper automorphisms | en_US |
dc.subject | Pell equation | en_US |
dc.subject | Ambiguous ideals | en_US |
dc.title | Indefinite quadratic forms and pell equations involving quadratic ideals | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000402191000009 | tr_TR |
dc.identifier.scopus | 2-s2.0-85020062912 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyet Fakültesi/Matematik Bölümü. | tr_TR |
dc.identifier.startpage | 263 | tr_TR |
dc.identifier.endpage | 279 | tr_TR |
dc.identifier.volume | 19 | tr_TR |
dc.identifier.issue | 2 | tr_TR |
dc.relation.journal | Mathematical Reports | en_US |
dc.contributor.buuauthor | Tekcan, Ahmet | - |
dc.contributor.researcherid | AAH-8518-2021 | tr_TR |
dc.subject.wos | Mathematics | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q4 | en_US |
dc.contributor.scopusid | 55883777900 | tr_TR |
dc.subject.scopus | Real Quadratic Fields; Pell's Equation; Number Field | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.