Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/34045
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArslan, Seval-
dc.contributor.authorDemir, Abdullah-
dc.contributor.authorŞahin, Seval-
dc.date.accessioned2023-09-26T08:17:23Z-
dc.date.available2023-09-26T08:17:23Z-
dc.date.issued2018-02-
dc.identifier.citationArslan, S. vd. (2018). ''Conservation of quantum efficiency in quantum well intermixing by stress engineering with dielectric bilayers''. Semiconductor Science and Technology, 33(2).en_US
dc.identifier.issn0268-1242-
dc.identifier.issn1361-6641-
dc.identifier.urihttps://doi.org/10.1088/1361-6641/aaa04d-
dc.identifier.urihttps://iopscience.iop.org/article/10.1088/1361-6641/aaa04d-
dc.identifier.urihttp://hdl.handle.net/11452/34045-
dc.description.abstractIn semiconductor lasers, quantum well intermixing (QWI) with high selectivity using dielectrics often results in lower quantum efficiency. In this paper, we report on an investigation regarding the effect of thermally induced dielectric stress on the quantum efficiency of quantum well structures in impurity-free vacancy disordering (IFVD) process using photoluminescence and device characterization in conjunction with microscopy. SiO2 and SixO2/SrF2 (versus SrF2) films were employed for the enhancement and suppression of QWI, respectively. Large intermixing selectivity of 75 nm (125 meV), consistent with the theoretical modeling results, with negligible effect on the suppression region characteristics, was obtained. SixO2 layer compensates for the large thermal expansion coefficient mismatch of SrF2 with the semiconductor and mitigates the detrimental effects of SrF2 without sacrificing its QWI benefits. The bilayer dielectric approach dramatically improved the dielectric-semiconductor interface quality. Fabricated high power semiconductor lasers demonstrated high quantum efficiency in the lasing region using the bilayer dielectric film during the intermixing process. Our results reveal that stress engineering in IFVD is essential and the thermal stress can be controlled by engineering the dielectric strain opening new perspectives for QWI of photonic devices.en_US
dc.description.sponsorshipErmaksan A.Ş.tr_TR
dc.language.isoenen_US
dc.publisherIOP Publishingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectEngineeringen_US
dc.subjectMaterials scienceen_US
dc.subjectPhysicsen_US
dc.subjectQuantum well intermixingen_US
dc.subjectImpurity free vacancy disorderingen_US
dc.subjectSemiconductor laseren_US
dc.subjectStress engineeringen_US
dc.subjectQuantum efficiencyen_US
dc.subjectThermal-expansionen_US
dc.subjectLaser-diodesen_US
dc.subjectGaasen_US
dc.subjectFabricationen_US
dc.subjectLayeren_US
dc.subjectSio2en_US
dc.subjectCWen_US
dc.subjectDielectric filmsen_US
dc.subjectDielectric materialsen_US
dc.subjectEfficiencyen_US
dc.subjectHigh power lasersen_US
dc.subjectMixing; Photonic devicesen_US
dc.subjectQuantum well lasersen_US
dc.subjectSemiconductor lasersen_US
dc.subjectSemiconductor quantum wellsen_US
dc.subjectSilicaen_US
dc.subjectSilicon compoundsen_US
dc.subjectStrontium compoundsen_US
dc.subjectThermal expansionen_US
dc.subjectDevice characterizationen_US
dc.subjectDielectric-semiconductor interfacesen_US
dc.subjectHigh power semiconductor laseren_US
dc.subjectHigh quantum efficiencyen_US
dc.subjectImpurity free vacancy disorderingen_US
dc.subjectQuantum well intermixingen_US
dc.subjectStress engineeringen_US
dc.subjectThermal expansion coefficientsen_US
dc.subjectQuantum efficiencyen_US
dc.titleConservation of quantum efficiency in quantum well intermixing by stress engineering with dielectric bilayersen_US
dc.typeArticleen_US
dc.identifier.wos000419470200001tr_TR
dc.identifier.scopus2-s2.0-85040969707tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Elektrik-Elektronik Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0001-5952-5993tr_TR
dc.identifier.volume33tr_TR
dc.identifier.issue2tr_TR
dc.relation.journalSemiconductor Science and Technologyen_US
dc.contributor.buuauthorAydınlı, Atilla-
dc.contributor.researcheridABI-7535-2020tr_TR
dc.relation.collaborationYurt içitr_TR
dc.subject.wosEngineering, electrical & electronicen_US
dc.subject.wosMaterials science, multidisciplinaryen_US
dc.subject.wosPhysics, condensed matteren_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ3en_US
dc.wos.quartileQ2 (Physics, condensed matter)en_US
dc.contributor.scopusid7005432613tr_TR
dc.subject.scopusSemiconductor Quantum Wells; Impurities; Aluminum Gallium Arsenidesen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Aydınlı_vd_2018.pdf1.97 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons