Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/34120
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kumara, Soundar R. | - |
dc.date.accessioned | 2023-09-28T07:40:58Z | - |
dc.date.available | 2023-09-28T07:40:58Z | - |
dc.date.issued | 2014-07 | - |
dc.identifier.citation | Çavdur, F. ve Kumara, S. R. (2014). "Network mining: Applications to business data". Information Systems Frontiers, 16(3), 473-490. | en_US |
dc.identifier.issn | 1387-3326 | - |
dc.identifier.issn | 1572-9419 | - |
dc.identifier.uri | https://doi.org/10.1007/s10796-012-9355-z | - |
dc.identifier.uri | https://link.springer.com/article/10.1007/s10796-012-9355-z | - |
dc.identifier.uri | http://hdl.handle.net/11452/34120 | - |
dc.description.abstract | This research addresses the problem of analyzing the temporal dynamics of business organizations. In particular, we concentrate on inferring the related businesses, i.e., are there groups of companies that are highly correlated through some measurement (metric)? We argue that business relationships derived from general literature (i.e., newspaper articles, news items etc.) may help us create a network of related companies (business networks). On the other hand, relative movement of stock prices can give us an indication of related companies (asset graphs). We also expect to see some relationships between these two kinds of networks. We adapt the asset graph construction approach from the literature for our asset graph implementations, and then, define our methodology for business network construction. Finally, an introduction to the exploration of some relationships between the asset graphs and business networks is presented. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Algorithms | en_US |
dc.subject | Stock market | en_US |
dc.subject | Business systems | en_US |
dc.subject | Networks | en_US |
dc.subject | Financial systems | en_US |
dc.subject | Network mining | en_US |
dc.subject | Algorithms | en_US |
dc.subject | Networks (circuits) | en_US |
dc.subject | Finance | en_US |
dc.subject | Business networks | en_US |
dc.subject | Business organizations | en_US |
dc.subject | Highly-correlated | en_US |
dc.subject | Business relationships | en_US |
dc.subject | Graph construction | en_US |
dc.subject | Business systems | en_US |
dc.subject | Financial system | en_US |
dc.subject | Industry | en_US |
dc.subject | Computer Science | en_US |
dc.subject | Dynamic asset trees | en_US |
dc.subject | Food webs | en_US |
dc.subject | Financial networks | en_US |
dc.subject | Markets | en_US |
dc.subject | Graphs | en_US |
dc.title | Network mining: Applications to business data | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000338280900010 | tr_TR |
dc.identifier.scopus | 2-s2.0-84903521253 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü. | tr_TR |
dc.contributor.orcid | 0000-0001-8054-5606 | tr_TR |
dc.identifier.startpage | 473 | tr_TR |
dc.identifier.endpage | 490 | tr_TR |
dc.identifier.volume | 16 | tr_TR |
dc.identifier.issue | 3 | tr_TR |
dc.relation.journal | Information Systems Frontiers | en_US |
dc.contributor.buuauthor | Çavdur, Fatih | - |
dc.contributor.researcherid | AAG-9471-2021 | tr_TR |
dc.relation.collaboration | Yurt dışı | tr_TR |
dc.subject.wos | Computer Science, information systems | en_US |
dc.subject.wos | Computer Science, theory & methods | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q2 | en_US |
dc.contributor.scopusid | 8419687000 | tr_TR |
dc.subject.scopus | Stock Market; Volatility Clustering; Time Series Analysis | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.