Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/34163
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKayaligil, Sinan-
dc.contributor.authorOzdemirel, Nur Evin-
dc.date.accessioned2023-09-29T10:23:37Z-
dc.date.available2023-09-29T10:23:37Z-
dc.date.issued2015-01-15-
dc.identifier.citationInkaya, T. vd. (2015). "An adaptive neighbourhood construction algorithm based on density and connectivity". Pattern Recognition Letters, 52, 17-24.en_US
dc.identifier.issn0167-8655-
dc.identifier.issnhttps://www.sciencedirect.com/science/article/pii/S0167865514002815-
dc.identifier.urihttps://doi.org/10.1016/j.patrec.2014.09.007-
dc.identifier.urihttp://hdl.handle.net/11452/34163-
dc.description.abstractA neighbourhood is a refined group of data points that are locally similar. It should be defined based on the local relations in a data set. However, selection of neighbourhood parameters is an unsolved problem for the traditional neighbourhood construction algorithms such as k-nearest neighbour and e-neighbourhood. To address this issue, we introduce a novel neighbourhood construction algorithm. We assume that there is no a priori information about the data set. Different from the neighbourhood definitions in the literature, the proposed approach extracts the density, connectivity and proximity relations among the data points in an adaptive manner, i.e. considering the local characteristics of points in the data set. It is based on one of the proximity graphs, Gabriel graph. The output of the proposed approach is a unique set of neighbours for each data point. The proposed approach has the advantage of being parameter free. The performance of the neighbourhood construction algorithm is tested on clustering and local outlier detection. The experimental results with various data sets show that, compared to the competing approaches, the proposed approach improves the average accuracy 3-66% in the neighbourhood construction, and 4-70% in the clustering. It can also detect outliers successfully.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectComputer scienceen_US
dc.subjectClusteringen_US
dc.subjectConnectivityen_US
dc.subjectData neighbourhooden_US
dc.subjectDensityen_US
dc.subjectGabriel graphen_US
dc.subjectLocal outlier detectionen_US
dc.subjectLocal outliersen_US
dc.subjectNeighbourhooden_US
dc.subjectDensity (specific gravity)en_US
dc.subjectDefinitionen_US
dc.subjectSearchen_US
dc.titleAn adaptive neighbourhood construction algorithm based on density and connectivityen_US
dc.typeArticleen_US
dc.identifier.wos000345697400003tr_TR
dc.identifier.scopus2-s2.0-84908425773tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0002-6260-0162tr_TR
dc.identifier.startpage17tr_TR
dc.identifier.endpage24tr_TR
dc.identifier.volume52tr_TR
dc.relation.journalPattern Recognition Lettersen_US
dc.contributor.buuauthorInkaya, Tulin-
dc.contributor.researcheridAAH-2155-2021tr_TR
dc.relation.collaborationYurt içitr_TR
dc.subject.wosComputer science; Artificial intelligenceen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ2en_US
dc.contributor.scopusid24490728300tr_TR
dc.subject.scopusData clustering; K-Mean algorithm; Cluster analysisen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.