Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/34233
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2023-10-06T06:00:19Z-
dc.date.available2023-10-06T06:00:19Z-
dc.date.issued2015-03-
dc.identifier.citationKuçukoglu, I. (2015). "A memory structure adapted simulated annealing algorithm for a green vehicle routing problem". Environmental Science and Pollution Research, 22(5), 3279-3297.en_US
dc.identifier.issn0944-1344-
dc.identifier.issnhttps://link.springer.com/article/10.1007/s11356-014-3253-5-
dc.identifier.urihttps://doi.org/10.1007/s11356-014-3253-5-
dc.identifier.urihttp://hdl.handle.net/11452/34233-
dc.descriptionBu çalışma, 21-24 Eylül 2013 tarihleri arasında Kuşadası[Türkiye]’de düzenlenen 2. International Conference on Water, Energy, and Environment (ICWEE)'da bildiri olarak sunulmuştur.tr_TR
dc.description.abstractCurrently, reduction of carbon dioxide (CO2) emissions and fuel consumption has become a critical environmental problem and has attracted the attention of both academia and the industrial sector. Government regulations and customer demands are making environmental responsibility an increasingly important factor in overall supply chain operations. Within these operations, transportation has the most hazardous effects on the environment, i.e., CO2 emissions, fuel consumption, noise and toxic effects on the ecosystem. This study aims to construct vehicle routes with time windows that minimize the total fuel consumption and CO2 emissions. The green vehicle routing problem with time windows (G-VRPTW) is formulated using a mixed integer linear programming model. A memory structure adapted simulated annealing (MSA-SA) meta-heuristic algorithm is constructed due to the high complexity of the proposed problem and long solution times for practical applications. The proposed models are integrated with a fuel consumption and CO2 emissions calculation algorithm that considers the vehicle technical specifications, vehicle load, and transportation distance in a green supply chain environment. The proposed models are validated using well-known instances with different numbers of customers. The computational results indicate that the MSA-SA heuristic is capable of obtaining good G-VRPTW solutions within a reasonable amount of time by providing reductions in fuel consumption and CO2 emissions.en_US
dc.description.sponsorshipIzmir Katip Celebi Universitesitr_TR
dc.description.sponsorshipAmer Univ Sharjahen_US
dc.description.sponsorshipUnited Arab Emirates Univen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCO2 emissionsen_US
dc.subjectFuel consumptionen_US
dc.subjectGreen logisticsen_US
dc.subjectGreen vehicle routing problemen_US
dc.subjectMixed integer linear programming modelen_US
dc.subjectSimulated annealing algorithmen_US
dc.subjectOptimizationen_US
dc.subjectRoutesen_US
dc.subjectTrucken_US
dc.subject.meshAir pollutantsen_US
dc.subject.meshAir pollutionen_US
dc.subject.meshAlgorithmsen_US
dc.subject.meshCarbon dioxideen_US
dc.subject.meshConservation of energy resourcesen_US
dc.subject.meshModels, theoreticalen_US
dc.subject.meshTransportationen_US
dc.subject.meshVehicle emissionsen_US
dc.titleA memory structure adapted simulated annealing algorithm for a green vehicle routing problemen_US
dc.typeArticleen_US
dc.typeProceedings Paperen_US
dc.identifier.wos000350331300012tr_TR
dc.identifier.scopus2-s2.0-84933516240tr_TR
dc.relation.publicationcategoryKonferans Öğesi - Uluslararasıtr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0002-5075-0876tr_TR
dc.contributor.orcid0000-0001-8248-8924tr_TR
dc.contributor.orcid0000-0002-2971-2701tr_TR
dc.contributor.orcid0000-0002-9835-0783tr_TR
dc.identifier.startpage3279tr_TR
dc.identifier.endpage3297tr_TR
dc.identifier.volume22tr_TR
dc.identifier.issue5tr_TR
dc.relation.journalEnvironmental Science and Pollution Researchen_US
dc.contributor.buuauthorKuçukoğlu, Ilker-
dc.contributor.buuauthorEne, Seval-
dc.contributor.buuauthorAksoy, Aslı-
dc.contributor.buuauthorOzturk, Nursel-
dc.contributor.researcheridD-8543-2015tr_TR
dc.contributor.researcheridAAG-8949-2021tr_TR
dc.contributor.researcheridAAG-9235-2021tr_TR
dc.contributor.researcheridAAG-9336-2021tr_TR
dc.identifier.pubmed25056743tr_TR
dc.subject.wosEnvironmental sciencesen_US
dc.indexed.wosSCIEen_US
dc.indexed.wosCPCISen_US
dc.indexed.scopusScopusen_US
dc.indexed.pubmedPubMeden_US
dc.wos.quartileQ2en_US
dc.contributor.scopusid55763879600tr_TR
dc.contributor.scopusid48461146800tr_TR
dc.contributor.scopusid35221094400tr_TR
dc.contributor.scopusid7005688805tr_TR
dc.subject.scopusVehicle routing problem; Route; Fuel consumptionen_US
dc.subject.emtreeAir pollutanten_US
dc.subject.emtreeCarbon dioxideen_US
dc.subject.emtreeExhaust gasen_US
dc.subject.emtreeAir pollutionen_US
dc.subject.emtreeAlgorithmen_US
dc.subject.emtreeAnalysisen_US
dc.subject.emtreeEnergy conservationen_US
dc.subject.emtreePrevention and controlen_US
dc.subject.emtreeTheoretical modelen_US
dc.subject.emtreeTraffic and transporten_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Kucukoglu_vd_2015.pdf1.11 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons