Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/34251
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYılmaz, Fırat Melih-
dc.date.accessioned2023-10-06T13:19:46Z-
dc.date.available2023-10-06T13:19:46Z-
dc.date.issued2021-01-
dc.identifier.citationYılmaz, F. M. ve Arabacı, Ö. (2021)."Should deep learning models be in high demand, or should they simply be a very hot topic? A comprehensive study for exchange rate forecasting". Computational Economics, 57(1), Special Issue, 217-245.en_US
dc.identifier.issn09277099-
dc.identifier.urihttps://doi.org/10.1007/s10614-020-10047-9-
dc.identifier.urihttps://link.springer.com/article/10.1007/s10614-020-10047-9-
dc.identifier.urihttp://hdl.handle.net/11452/34251-
dc.description.abstractExchange rate movements can significantly impact not only foreign trade, capital flows, and asset portfolio management, but also real economic activity. Therefore, the forecast of exchange rates has always been of great interest among academics, economic agents, and institutions. However, exchange rate series are essentially dynamic and nonlinear in nature and thus, forecasting exchange rates is a difficult task. On the other hand, deep learning models in solving time series forecasting tasks have been proposed in the last half-decade. But the number of formal comparative study in terms of exchange rate forecasting with deep learning models is quite limited. For this purpose, this study applies ten different models (Random Walk, Autoregressive Moving Average, Threshold Autoregression, Autoregressive Fractionally Integrated Moving Average, Support Vector Regression, Multilayer Perceptron, Recurrent Neural Network, Long Short Term Memory, Gated Recurrent Unit and Autoregressive Moving Average-Long Short Term Memory Hybrid Models) and two forecasting modes (recursive and rolling window) to predict three major exchange rate returnsnamely, the Canadian dollar, Australian dollar and British pound against the US Dollar in monthly terms. To evaluate the forecasting performances of the models, we used Model Confidence Set procedure as an advanced test. According to our results, the proposed hybrid model produced the best out-of-sample forecast performance in all samples, without exception.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep learningen_US
dc.subjectForecastingen_US
dc.subjectExchange ratesen_US
dc.subjectHybrid modelen_US
dc.subjectArtifical neural networksen_US
dc.subjectMarkov Switching modelsen_US
dc.subjectRandom walken_US
dc.subjectRate predictionen_US
dc.subjectSetar modelsen_US
dc.subjectFeedforwarden_US
dc.subjectPerformanceen_US
dc.subjectInferenceen_US
dc.subjectRealityen_US
dc.subjectDollaren_US
dc.subjectBusiness economicsen_US
dc.subjectMathematicsen_US
dc.titleShould deep learning models be in high demand, or should they simply be a very hot topic? A comprehensive study for exchange rate forecastingen_US
dc.typeArticleen_US
dc.identifier.wos000572586500001tr_TR
dc.identifier.scopus2-s2.0-85091451173tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/İktisadi ve İdari Bilimler Fakültesi/Ekonometri Bölümü.tr_TR
dc.contributor.orcid0000-0002-5434-2458tr_TR
dc.identifier.startpage217tr_TR
dc.identifier.endpage245tr_TR
dc.identifier.volume57tr_TR
dc.identifier.issue1, Special Issueen_US
dc.relation.journalComputational Economicsen_US
dc.contributor.buuauthorArabacı, Özer-
dc.contributor.researcheridAAG-8285-2021tr_TR
dc.relation.collaborationYurt içitr_TR
dc.subject.wosEconomicsen_US
dc.subject.wosMathematics, interdisciplinary applicationsen_US
dc.subject.wosManagementen_US
dc.indexed.wosSCIEen_US
dc.indexed.wosSSCIen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ3en_US
dc.wos.quartileQ4 (Management)en_US
dc.contributor.scopusid57195070405tr_TR
dc.subject.scopusFinacial markets ; Stock prices ; Trading rulesen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.