Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/34290
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wright, Jefferson | - |
dc.contributor.author | Bertin, Damien | - |
dc.contributor.author | Shukla, Arun | - |
dc.date.accessioned | 2023-10-11T12:46:56Z | - |
dc.date.available | 2023-10-11T12:46:56Z | - |
dc.date.issued | 2015-06-01 | - |
dc.identifier.citation | Yazıcı, M. vd. (2015). "Preferentially filled foam core corrugated steel sandwich structures for improved blast performance". Journal of Applied Mechanics, Transactions ASME, 82(6). | en_US |
dc.identifier.issn | 0021-8936 | - |
dc.identifier.uri | https://doi.org/10.1115/1.4030292 | - |
dc.identifier.uri | http://hdl.handle.net/11452/34290 | - |
dc.description.abstract | The mechanisms by which different morphologies of preferentially foam filled corrugated panels deform under planar blast loading, transmit shock, and absorb energy are investigated experimentally and numerically for the purpose of mitigating back-face deflection (BFD). Six foam filling configurations were fabricated and subjected to shock wave loading generated by a shock tube. Shock tube experimental results obtained from high-speed photography were used to validate the numerical models. The validated numerical model was further used to analyze 24 different core configurations. The experimental and numerical results show that soft/hard arrangements (front to back) are the most effective for blast resistivity as determined by the smallest BFDs. The number of foam filled layers in each specimen affected the amount of front-face deflections (FFDs), but did relatively little to alter BFDs, and results do not support alternating foam filling layers as a valid method to attenuate shock impact. | en_US |
dc.description.sponsorship | United States Department of Homeland Security (DHS) (2009-ST-061-TS0011) | tr_TR |
dc.language.iso | en | en_US |
dc.publisher | ASME | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Mechanics | en_US |
dc.subject | Blast loading | en_US |
dc.subject | Corrugated steel core | en_US |
dc.subject | Sandwich panel | en_US |
dc.subject | Filling hierarchy | en_US |
dc.subject | Dynamic-response | en_US |
dc.subject | Plates | en_US |
dc.subject | Subject | en_US |
dc.subject | Panels | en_US |
dc.subject | Resistance | en_US |
dc.subject | Behavior | en_US |
dc.subject | Beams | en_US |
dc.title | Preferentially filled foam core corrugated steel sandwich structures for improved blast performance | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000355941600005 | tr_TR |
dc.identifier.scopus | 2-s2.0-84929223844 | tr_TR |
dc.relation.tubitak | 2219 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Mühendislik Fakültesi/Otomotiv Mühendisliği Bölümü. | tr_TR |
dc.contributor.orcid | 0000-0002-8720-7594 | tr_TR |
dc.identifier.volume | 82 | tr_TR |
dc.identifier.issue | 6 | tr_TR |
dc.relation.journal | Journal of Applied Mechanics, Transactions ASME | en_US |
dc.contributor.buuauthor | Yazıcı, Murat | - |
dc.contributor.researcherid | M-4741-2017 | tr_TR |
dc.relation.collaboration | Yurt dışı | tr_TR |
dc.subject.wos | Mechanics | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q2 | en_US |
dc.contributor.scopusid | 7007162323 | tr_TR |
dc.subject.scopus | Underwater explosions; Blast; Sandwich plate | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.