Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/34421
Full metadata record
DC FieldValueLanguage
dc.contributor.authorButt, Saad I.-
dc.contributor.authorNasir, Jamshed-
dc.date.accessioned2023-10-18T08:47:24Z-
dc.date.available2023-10-18T08:47:24Z-
dc.date.issued2020-
dc.identifier.citationÖzdemir, M. E. vd. (2020). "Several integral inequalities for (α, s, m) -convex functions". AIMS Mathematics, 5(4), 3906-3921.en_US
dc.identifier.issn2473-6988-
dc.identifier.urihttps://doi.org/10.3934/math.2020253-
dc.identifier.urihttps://www.aimspress.com/article/doi/10.3934/math.2020253?viewType=HTML-
dc.identifier.urihttp://hdl.handle.net/11452/34421-
dc.description.abstractIn this paper, we establish several new integral inequalities for (alpha, s, m)-convex functions. We recapture the Hermite-Hadamard inequality as a particular case. In order to obtain our results, we use classical inequalities such as Holder inequality, Holder-Iscan inequality and Power mean inequality. We formulate several bounds involving special functions like classical Euler-Gamma, Beta and Psi-Gamma functions. We also give some applications.en_US
dc.language.isoenen_US
dc.publisherAmerican Institute of Mathematical Sciencesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMathematicsen_US
dc.subjectConvex functionen_US
dc.subject(Alpha, s, m)-convex functionen_US
dc.subjectHermite-hadamard inequalityen_US
dc.subjectRiemann-liouville fractional integralsen_US
dc.subjectHolder's inequalityen_US
dc.subjectPower mean inequalityen_US
dc.subjectPsi-gamma functionsen_US
dc.subjectHermite-hadamard-typem)-convexen_US
dc.subject(Alphaen_US
dc.subject(Sen_US
dc.titleSeveral integral inequalities for (α, s, m) -convex functionsen_US
dc.typeArticleen_US
dc.identifier.wos000532484000073tr_TR
dc.identifier.scopus2-s2.0-85087943345tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Eğitim Fakültesi/Matematik ve Fen Bilimleri Eğitimi Bölümü.tr_TR
dc.contributor.orcid0000-0001-7594-8291tr_TR
dc.identifier.startpage3906tr_TR
dc.identifier.endpage3921tr_TR
dc.identifier.volume5tr_TR
dc.identifier.issue4tr_TR
dc.relation.journalAIMS Mathematicsen_US
dc.contributor.buuauthorÖzdemir, M. Emin-
dc.contributor.buuauthorBayraktar, Bahtiyar-
dc.contributor.researcheridAAH-1091-2021tr_TR
dc.contributor.researcheridABI-7823-2020tr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.subject.wosMathematics, applieden_US
dc.subject.wosMathematicsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.contributor.scopusid22734889600tr_TR
dc.contributor.scopusid55320522100tr_TR
dc.subject.scopusOstrowski type inequality; Convex function; Fractional integralen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Özdemir_vd_2020.pdf255.49 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons