Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/34732
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2023-11-01T10:23:55Z | - |
dc.date.available | 2023-11-01T10:23:55Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Çelik, G. S. ve Soydan, G. (2018). ''Elliptic curves containing sequences of consecutive cubes''. Rocky Mountain Journal of Mathematics, 48(7), 2163-2174. | en_US |
dc.identifier.issn | 0035-7596 | - |
dc.identifier.issn | 1945-3795 | - |
dc.identifier.uri | https://doi.org/10.1216/RMJ-2018-48-7-2163 | - |
dc.identifier.uri | https://projecteuclid.org/journals/rocky-mountain-journal-of-mathematics/volume-48/issue-7/Elliptic-curves-containing-sequences-of-consecutive-cubes/10.1216/RMJ-2018-48-7-2163.full | - |
dc.identifier.uri | http://hdl.handle.net/11452/34732 | - |
dc.description.abstract | Let E be an elliptic curve over Q described by y(2) = x(3)+Kx+L, where K, L is an element of Q. A set of rational points (x(i), y(i)) is an element of E(Q) for i = 1, 2,..., k, is said to be a sequence of consecutive cubes on E if the x-coordinates of the points x(i)'s for i = 1, 2,..., form consecutive cubes. In this note, we show the existence of an infinite family of elliptic curves containing a length-5-term sequence of consecutive cubes. Moreover, these five rational points in E(Q) are linearly independent, and the rank r of E(Q) is at least 5. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Rocky Mountain Mathematics Consortium | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Atıf Gayri Ticari Türetilemez 4.0 Uluslararası | tr_TR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Mathematics | en_US |
dc.subject | Elliptic curves | en_US |
dc.subject | Rational points | en_US |
dc.subject | Sequences of consecutive cubes | en_US |
dc.subject | Arithmetic progressions | en_US |
dc.title | Elliptic curves containing sequences of consecutive cubes | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000453227100003 | tr_TR |
dc.identifier.scopus | 2-s2.0-85061627853 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü. | tr_TR |
dc.relation.bap | F-2016/9 | tr_TR |
dc.identifier.startpage | 2163 | tr_TR |
dc.identifier.endpage | 2174 | tr_TR |
dc.identifier.volume | 48 | tr_TR |
dc.identifier.issue | 7 | tr_TR |
dc.relation.journal | Rocky Mountain Journal of Mathematics | en_US |
dc.contributor.buuauthor | Çelik, Gamze Savaş | - |
dc.contributor.buuauthor | Soydan, Gökhan | - |
dc.subject.wos | Mathematics | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q4 | en_US |
dc.contributor.scopusid | 57206274023 | tr_TR |
dc.contributor.scopusid | 23566953200 | tr_TR |
dc.subject.scopus | Rank Of Data; Congruent Numbers; Selmer Group | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Çelik_Soydan_2018.pdf | 112.09 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License