Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/34844
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKurkova, V.-
dc.contributor.authorManolopoulos, Y.-
dc.contributor.authorHammer, B.-
dc.contributor.authorIliadis, L.-
dc.contributor.authorMaglogiannis, I.-
dc.date.accessioned2023-11-10T11:24:56Z-
dc.date.available2023-11-10T11:24:56Z-
dc.date.issued2018-
dc.identifier.citationSatar, B. ve Dirik, A. E. (2018). ''Deep learning based vehicle make-model classification''. ed. K. Kurkova vd. Lecture Notes in Computer Science, Artificial Neural Networks and Machine Learning – ICANN 2018, 11141(Part III), 544-553.en_US
dc.identifier.isbn978-3-030-01424-7-
dc.identifier.issn0302-9743-
dc.identifier.issn1611-3349-
dc.identifier.urihttps://doi.org/10.1007/978-3-030-01424-7_53-
dc.identifier.urihttps://link.springer.com/chapter/10.1007/978-3-030-01424-7_53-
dc.identifier.urihttp://hdl.handle.net/11452/34844-
dc.descriptionBu çalışma, 04-07 Ekim 2018 tarihlerinde Rhodes[Yunanistan]’da düzenlenen 27. International Conference on Artificial Neural Networks (ICANN) Kongresi‘nde bildiri olarak sunulmuştur.tr_TR
dc.description.abstractThis paper studies the problem of vehicle make & model classification. Some of the main challenges are reaching high classification accuracy and reducing the annotation time of the images. To address these problems, we have created a fine-grained database using online vehicle marketplaces of Turkey. A pipeline is proposed to combine an SSD (Single Shot Multibox Detector) model with a CNN (Convolutional Neural Network) model to train on the database. In the pipeline, we first detect the vehicles by following an algorithm which reduces the time for annotation. Then, we feed them into the CNN model. It is reached approximately 4% better classification accuracy result than using a conventional CNN model. Next, we propose to use the detected vehicles as ground truth bounding box (GTBB) of the images and feed them into an SSD model in another pipeline. At this stage, it is reached reasonable classification accuracy result without using perfectly shaped GTBB. Lastly, an application is implemented in a use case by using our proposed pipelines which detects the unauthorized vehicles by comparing their license plate numbers and make & models. It is assumed that license plates are readable.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectComputer scienceen_US
dc.subjectDeep learningen_US
dc.subjectVehicleen_US
dc.subjectModelen_US
dc.subjectClassificationen_US
dc.subjectCNNen_US
dc.subjectResNeten_US
dc.subjectDetectionen_US
dc.subjectSSDen_US
dc.subjectFrauden_US
dc.subjectLicense plateen_US
dc.subjectClassification (of information)en_US
dc.subjectError detectionen_US
dc.subjectLicense plates (automobile)en_US
dc.subjectModelsen_US
dc.subjectNeural networksen_US
dc.subjectPipelinesen_US
dc.subjectVehiclesen_US
dc.subjectBounding boxen_US
dc.subjectClassification accuracyen_US
dc.subjectConvolutional neural networken_US
dc.subjectFine graineden_US
dc.subjectFrauden_US
dc.subjectModel classificationen_US
dc.subjectDeep learningen_US
dc.subjectSingle shotsen_US
dc.titleDeep learning based vehicle make-model classificationen_US
dc.typeProceedings Paperen_US
dc.identifier.wos000463340000053tr_TR
dc.identifier.scopus2-s2.0-85054801490tr_TR
dc.relation.publicationcategoryKonferans Öğesi - Uluslararasıtr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Elektrik-Elektronik Mühendisliği Bölümü.tr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Bilgisayar Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0002-6200-1717tr_TR
dc.identifier.startpage544tr_TR
dc.identifier.endpage553tr_TR
dc.identifier.volume11141tr_TR
dc.identifier.issuePart IIItr_TR
dc.relation.journalLecture Notes in Computer Science, Artificial Neural Networks and Machine Learning – ICANN 2018en_US
dc.contributor.buuauthorSatar, Burak-
dc.contributor.buuauthorDirik, Ahmet Emir-
dc.contributor.researcheridK-6977-2012tr_TR
dc.subject.wosComputer science, artificial intelligenceen_US
dc.indexed.wosCPCISen_US
dc.indexed.scopusScopusen_US
dc.contributor.scopusid57204183877tr_TR
dc.contributor.scopusid23033658100tr_TR
dc.subject.scopusObject Detection; Deep Learning; IOUen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Satar_Dirik_2020.pdf82.7 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons