Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/34931
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Koçak, Yılmaz | - |
dc.contributor.author | Gülbandılar, Eyyüp | - |
dc.date.accessioned | 2023-11-17T08:44:35Z | - |
dc.date.available | 2023-11-17T08:44:35Z | - |
dc.date.issued | 2018-01 | - |
dc.identifier.citation | Özcan, G. vd. (2018). ''Compressive strength estimation of concrete containing zeolite and diatomite: An expert system implementation''. Computers and Concrete, 21(1), 21-30. | en_US |
dc.identifier.issn | 1598-8198 | - |
dc.identifier.issn | 1598-818X | - |
dc.identifier.uri | https://doi.org/10.12989/cac.2018.21.1.021 | - |
dc.identifier.uri | https://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE10763259 | - |
dc.identifier.uri | http://hdl.handle.net/11452/34931 | - |
dc.description.abstract | In this study, we analyze the behavior of concrete which contains zeolite and diatomite. In order to achieve the goal, we utilize expert system methods. The utilized methods are artificial neural network and adaptive network-based fuzzy inference systems. In this respect, we exploit seven different mixes of concrete. The concrete mixes contain zeolite, diatomite, mixture of zeolite and diatomite. All seven concrete mixes are exposed to 28, 56 and 90 days' compressive strength experiments with 63 specimens. The results of the compressive strength experiments are used as input data during the training and testing of expert system methods. In terms of artificial neural network and adaptive network-based fuzzy models, data format comprises seven input parameters, which are; the age of samples (days), amount of Portland cement, zeolite, diatomite, aggregate, water and hyper plasticizer. On the other hand, the output parameter is defined as the compressive strength of concrete. In the models, training and testing results have concluded that both expert system model yield thrilling medium to predict the compressive strength of concrete containing zeolite and diatomite. | en_US |
dc.description.sponsorship | Düzce Üniversitesi - 2011.03.HD.011 | tr_TR |
dc.language.iso | en | en_US |
dc.publisher | Techno Press | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Computer science | en_US |
dc.subject | Construction & building technology | en_US |
dc.subject | Engineering | en_US |
dc.subject | Materials science | en_US |
dc.subject | Expert systems | en_US |
dc.subject | Compressive strength | en_US |
dc.subject | Concrete | en_US |
dc.subject | Zeolite | en_US |
dc.subject | Diatomite | en_US |
dc.subject | Artificial neural-networks | en_US |
dc.subject | Model tree algorithm | en_US |
dc.subject | Fly-ash | en_US |
dc.subject | Fuzzy-logic | en_US |
dc.subject | Silica fume | en_US |
dc.subject | Hydration characteristics | en_US |
dc.subject | Mechanical-properties | en_US |
dc.subject | Blended cements | en_US |
dc.subject | Portland-cement | en_US |
dc.subject | Prediction | en_US |
dc.subject | Concrete mixers | en_US |
dc.subject | Concrete mixtures | en_US |
dc.subject | Concretes | en_US |
dc.subject | Expert systems | en_US |
dc.subject | Fuzzy inference | en_US |
dc.subject | Fuzzy logic | en_US |
dc.subject | Fuzzy neural networks | en_US |
dc.subject | Portland cement | en_US |
dc.subject | Zeolites | en_US |
dc.subject | Adaptive network based fuzzy inference system | en_US |
dc.subject | Adaptive networks | en_US |
dc.subject | Compressive strength of concrete | en_US |
dc.subject | Diatomite | en_US |
dc.subject | Output parameters | en_US |
dc.subject | System implementation | en_US |
dc.subject | System modeling | en_US |
dc.subject | Training and testing | en_US |
dc.title | Compressive strength estimation of concrete containing zeolite and diatomite: An expert system implementation | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000429256700003 | tr_TR |
dc.identifier.scopus | 2-s2.0-85058979329 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Mühendislik Fakültesi/Bilgisayar Mühendisliği Bölümü. | tr_TR |
dc.contributor.orcid | 0000-0002-1166-5919 | tr_TR |
dc.identifier.startpage | 21 | tr_TR |
dc.identifier.endpage | 30 | tr_TR |
dc.identifier.volume | 21 | tr_TR |
dc.identifier.issue | 1 | tr_TR |
dc.relation.journal | Computers and Concrete | en_US |
dc.contributor.buuauthor | Özcan, Giyasettin | - |
dc.contributor.researcherid | Z-1130-2018 | tr_TR |
dc.relation.collaboration | Yurt içi | tr_TR |
dc.subject.wos | Computer science, interdisciplinary applications | en_US |
dc.subject.wos | Construction & building technology | en_US |
dc.subject.wos | Engineering, civil | en_US |
dc.subject.wos | Materials science, characterization & testing | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.indexed.pubmed | PubMed | en_US |
dc.wos.quartile | Q3 (Computer science, interdisciplinary applications) | en_US |
dc.wos.quartile | Q2 | en_US |
dc.contributor.scopusid | 15770103700 | tr_TR |
dc.subject.scopus | Compressive Strength; High Performance Concrete; Prediction | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.