Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/34931
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKoçak, Yılmaz-
dc.contributor.authorGülbandılar, Eyyüp-
dc.date.accessioned2023-11-17T08:44:35Z-
dc.date.available2023-11-17T08:44:35Z-
dc.date.issued2018-01-
dc.identifier.citationÖzcan, G. vd. (2018). ''Compressive strength estimation of concrete containing zeolite and diatomite: An expert system implementation''. Computers and Concrete, 21(1), 21-30.en_US
dc.identifier.issn1598-8198-
dc.identifier.issn1598-818X-
dc.identifier.urihttps://doi.org/10.12989/cac.2018.21.1.021-
dc.identifier.urihttps://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE10763259-
dc.identifier.urihttp://hdl.handle.net/11452/34931-
dc.description.abstractIn this study, we analyze the behavior of concrete which contains zeolite and diatomite. In order to achieve the goal, we utilize expert system methods. The utilized methods are artificial neural network and adaptive network-based fuzzy inference systems. In this respect, we exploit seven different mixes of concrete. The concrete mixes contain zeolite, diatomite, mixture of zeolite and diatomite. All seven concrete mixes are exposed to 28, 56 and 90 days' compressive strength experiments with 63 specimens. The results of the compressive strength experiments are used as input data during the training and testing of expert system methods. In terms of artificial neural network and adaptive network-based fuzzy models, data format comprises seven input parameters, which are; the age of samples (days), amount of Portland cement, zeolite, diatomite, aggregate, water and hyper plasticizer. On the other hand, the output parameter is defined as the compressive strength of concrete. In the models, training and testing results have concluded that both expert system model yield thrilling medium to predict the compressive strength of concrete containing zeolite and diatomite.en_US
dc.description.sponsorshipDüzce Üniversitesi - 2011.03.HD.011tr_TR
dc.language.isoenen_US
dc.publisherTechno Pressen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectComputer scienceen_US
dc.subjectConstruction & building technologyen_US
dc.subjectEngineeringen_US
dc.subjectMaterials scienceen_US
dc.subjectExpert systemsen_US
dc.subjectCompressive strengthen_US
dc.subjectConcreteen_US
dc.subjectZeoliteen_US
dc.subjectDiatomiteen_US
dc.subjectArtificial neural-networksen_US
dc.subjectModel tree algorithmen_US
dc.subjectFly-ashen_US
dc.subjectFuzzy-logicen_US
dc.subjectSilica fumeen_US
dc.subjectHydration characteristicsen_US
dc.subjectMechanical-propertiesen_US
dc.subjectBlended cementsen_US
dc.subjectPortland-cementen_US
dc.subjectPredictionen_US
dc.subjectConcrete mixersen_US
dc.subjectConcrete mixturesen_US
dc.subjectConcretesen_US
dc.subjectExpert systemsen_US
dc.subjectFuzzy inferenceen_US
dc.subjectFuzzy logicen_US
dc.subjectFuzzy neural networksen_US
dc.subjectPortland cementen_US
dc.subjectZeolitesen_US
dc.subjectAdaptive network based fuzzy inference systemen_US
dc.subjectAdaptive networksen_US
dc.subjectCompressive strength of concreteen_US
dc.subjectDiatomiteen_US
dc.subjectOutput parametersen_US
dc.subjectSystem implementationen_US
dc.subjectSystem modelingen_US
dc.subjectTraining and testingen_US
dc.titleCompressive strength estimation of concrete containing zeolite and diatomite: An expert system implementationen_US
dc.typeArticleen_US
dc.identifier.wos000429256700003tr_TR
dc.identifier.scopus2-s2.0-85058979329tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Bilgisayar Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0002-1166-5919tr_TR
dc.identifier.startpage21tr_TR
dc.identifier.endpage30tr_TR
dc.identifier.volume21tr_TR
dc.identifier.issue1tr_TR
dc.relation.journalComputers and Concreteen_US
dc.contributor.buuauthorÖzcan, Giyasettin-
dc.contributor.researcheridZ-1130-2018tr_TR
dc.relation.collaborationYurt içitr_TR
dc.subject.wosComputer science, interdisciplinary applicationsen_US
dc.subject.wosConstruction & building technologyen_US
dc.subject.wosEngineering, civilen_US
dc.subject.wosMaterials science, characterization & testingen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.indexed.pubmedPubMeden_US
dc.wos.quartileQ3 (Computer science, interdisciplinary applications)en_US
dc.wos.quartileQ2en_US
dc.contributor.scopusid15770103700tr_TR
dc.subject.scopusCompressive Strength; High Performance Concrete; Predictionen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.