Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/34951
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGündoğdu, Sinan-
dc.contributor.authorDemir, Abdullah-
dc.contributor.authorPisheh, Hadi Sedaghat-
dc.date.accessioned2023-11-20T13:21:48Z-
dc.date.available2023-11-20T13:21:48Z-
dc.date.issued2018-12-01-
dc.identifier.citationGündoğdu, S. vd. (2018). ''Low-loss regrowth-free long wavelength quantum cascade lasers''. IEEE Photonics Technology Letters, 30(23), 1997-2000.en_US
dc.identifier.issn1041-1135-
dc.identifier.issn1941-0174-
dc.identifier.urihttps://doi.org/10.1109/LPT.2018.2873827-
dc.identifier.urihttps://ieeexplore.ieee.org/document/8481696-
dc.identifier.urihttp://hdl.handle.net/11452/34951-
dc.description.abstractOptical power output is the most sought-after quantity in laser engineering. This is also true for quantum cascade lasers operating especially at long wavelengths. Buried heterostructure cascade lasers with epitaxial regrowth have typically shown the lowest loss due to high current confinement as well as superior lateral thermal conductivity at the expense of complexity and cost. Among the many factors affecting optical output are the widely used passivating materials such as Si3N4 and SiO2. These materials have substantial optical absorption in the long wavelength infrared, which results in optical loss reducing the output of the laser. In this letter, we report on quantum cascade lasers with various waveguide widths and cavity lengths using both PECVD grown Si3N4 and e-beam evaporated HfO2 as passivating material on the same structure. Their slope efficiency was measured, and the cavity losses for the two lasers were calculated. We show that HfO2 passivated lasers have approximately 5.5 cm(-1) lower cavity loss compared to Si3N4 passivated lasers. We observe up to 38% reduction in lasing threshold current, for lasers with HfO2 passivation. We model the losses of the cavity due to both insulator and metal contacts of the lasers using Comsol Multiphysics for various widths. We find that the loss due to absorption in the dielectric is a significant effect for Si3N4 passivated lasers and lasers in the 8-12-mu m range may benefit from low loss passivation materials such as HfO2. Our results suggest that low-loss long wavelength quantum cascade lasers can be realized without epitaxial overgrowth.en_US
dc.description.sponsorshipBilim, Sanayi ve Teknoloji Bakanlığı - Türkiye - 573. STZ. 2013-2tr_TR
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEngineeringen_US
dc.subjectOpticsen_US
dc.subjectPhysicsen_US
dc.subjectQuantum cascade lasersen_US
dc.subjectQuantum efficiencyen_US
dc.subjectLossen_US
dc.subjectHafnium dioxideen_US
dc.subjectPassivationen_US
dc.subjectThin-filmsen_US
dc.subjectOptical-propertiesen_US
dc.subjectGainen_US
dc.subjectCavity resonatorsen_US
dc.subjectDielectric materialsen_US
dc.subjectEfficiencyen_US
dc.subjectElectric lossesen_US
dc.subjectHafnium compounds; aveguidesen_US
dc.subjectHafnium oxidesen_US
dc.subjectInfrared radiationen_US
dc.subjectLaser beamsen_US
dc.subjectLight absorptionen_US
dc.subjectLossesen_US
dc.subjectOptical lossesen_US
dc.subjectOptical waveguidesen_US
dc.subjectPassivationen_US
dc.subjectQuantum cascade lasersen_US
dc.subjectSilicaen_US
dc.subjectW.en_US
dc.subjectBuried heterostructuresen_US
dc.subjectComsol multiphysicsen_US
dc.subjectEpitaxial overgrowthen_US
dc.subjectHafnium dioxideen_US
dc.subjectLong-wavelength infrareden_US
dc.subjectMeasurement by laser beamen_US
dc.subjectPassivation materialsen_US
dc.subjectWaveguide lasersen_US
dc.subjectQuantum efficiencyen_US
dc.titleLow-loss regrowth-free long wavelength quantum cascade lasersen_US
dc.typeArticleen_US
dc.identifier.wos000451233300001tr_TR
dc.identifier.scopus2-s2.0-85054478883tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Elektrik-Elektronik Mühendisliği Bölümü.tr_TR
dc.identifier.startpage1997tr_TR
dc.identifier.endpage2000tr_TR
dc.identifier.volume30tr_TR
dc.identifier.issue23tr_TR
dc.relation.journalIEEE Photonics Technology Lettersen_US
dc.contributor.buuauthorAydınlı, Atilla-
dc.contributor.researcheridABI-7535-2020tr_TR
dc.relation.collaborationYurt içitr_TR
dc.subject.wosEngineering, electrical & electronicen_US
dc.subject.wosOpticsen_US
dc.subject.wosPhysics, applieden_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ2en_US
dc.contributor.scopusid7005432613tr_TR
dc.subject.scopusGermanium; Energy Gap; Sigeen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.