Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/34964
Title: Shock response of filled corrugated sandwich structures under extreme temperatures
Authors: Fahr, Payam
Shukla, Arun
Uludağ Üniversitesi/Mühendislik Fakültesi/Otomotiv Mühendisliği Bölümü.
0000-0002-8720-7594
Yazıcı, Murat
M-4741-2017
7007162323
Keywords: Engineering
Materials science
Shock
Syntactic foam
High temperature
Corrugated sandwich panel
Digital image correlation
Dynamic-response
Syntactic foam
Behavior
Steel
Panels
Honeycombs
Density
Bandpass filters
Cameras
Correlation methods
Deformation
Fillers
Foams
High speed cameras
Honeycomb structures
Image analysis
Image analysis
Light sources
Image analysis
Light sources
Materials testing
Optical correlation
Optical filters
Sandwich structures
Shock tubes
Silica
Silicones
Strain
Strain measurement
Syntactics
Digital image correlations
High temperature
Sandwich panel
Syntactic foams
Shock testing
Issue Date: Jan-2018
Publisher: Sage Puplications
Citation: Fahr, P. vd. (2018). ''Shock response of filled corrugated sandwich structures under extreme temperatures''. Journal of Sandwich Structures and Materials, 20(1), 130-149.
Abstract: Shock tube experiments were performed to investigate the blast response of corrugated steel cellular core sandwich panels filled with a silicone based syntactic foam at room and high temperatures. The syntactic foam filler was prepared by mixing a two-part silicone mixture with glass microspheres; its microstructure, and mechanical properties were also characterized. The syntactic foam-filled sandwich panels were loaded via air shock pressure by using the shock tube with a fixture capable of testing materials at temperatures up to 900?. High-speed photo-optical methods, digital image correlation techniques, were used in tandem with optical band-pass filters and high intensity light sources for providing sufficient contrast at elevated temperatures. Back-face deformation images were captured using two synchronized high-speed cameras while a third camera captured the side view deformation images. The shock pressure profiles and digital image correlation analysis were used to obtain the impulse imparted to the specimen, transient deflection, in-plane strain and out-of-plane velocity of the back-face sheet. It was observed that using the syntactic foam as a filler material decreased the front face and back face deflections by 42% and 27%, respectively, as compared to the empty sandwich panel. At high temperatures, the silicone-based syntactic foam decomposes into silica, a stable and non-hazardous byproduct. The highest impulse was imparted to the specimen at room temperature and subsequently lower impulses with increasing temperatures were observed. Due to the increased ductility of steel at high temperatures, the specimens demonstrated an increase in back face deflection, in-plane strain and out-of-plane velocity with increased temperatures, with weld failure being the primary form of core damage.
URI: https://doi.org/10.1177/1099636216650987
https://journals.sagepub.com/doi/10.1177/1099636216650987
http://hdl.handle.net/11452/34964
ISSN: 1099-6362
1530-7972
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.