Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/7607
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBaşkan, Turgut-
dc.contributor.authorCangül, İsmail Naci-
dc.date.accessioned2020-02-03T06:08:59Z-
dc.date.available2020-02-03T06:08:59Z-
dc.date.issued1989-06-09-
dc.identifier.citationCangül, İ.N. (1989). Kompakt klein yüzeylerin otomorfizmleri. Yayınlanmamış yüksek lisans tezi. Uludağ Üniversitesi Fen Bilimleri Enstitüsü.tr_TR
dc.identifier.urihttp://hdl.handle.net/11452/7607-
dc.description.abstractBu tezde kompakt Klein yüzeylerin otomorfizmleri teorisi incelendi. Klein yüzey dendiğinde yönlendirilebilen ya da yönlendirilemeyen bir Riemann yüzeyini anlayacağız. X, üzerindeki bir dianalitik yapı ile verilen bir Klein yüzey olsun. Dianalitik olan f : X -> X topolojik eşyapı dönüşümüne X in bir otomorfizmi denir. Hurwitz, cinsi g≥2 olan kenarsız yönlendirilebilir kompakt Klein yüzeyleri inceleyerek bu yüzeylerin otomorfizm gruplarının sonlu olduğunu ve aslında 84(g-1) i geçemeyeceğini göstermiştir. Macbeath de bu sınırın sonsuz çoklukta g değeri için elde edildiğini bulmuştur. Yüzyılımızda kompakt Klein yüzeyler ve bunların otomorfizmleri hâlâ önemli bir araştırma konusudur. Klein yüzeylerin otomorfizm grupları NEC gruplar yardımı ile çalışılabilir. Bu sebepten bu tezin birinci bölümünde NEC grupların genel özelliklerini belirttik. İkinci bölüm Klein yüzeyler teorisine ayrılmıştır. Üçüncü bölüm bu tezin en geniş bölümünü oluşturmaktadır. Bu son bölümde kenarlı ya da kenarsız, kompakt Klein yüzeylerin otomorfizm grupları incelenmiştir. Bu tezde konuyla ilgili birçok önemli teorem ve sonucu biraraya getirdiğimizi ümit ediyoruz.tr_TR
dc.description.abstractIn this thesis the theory of automorphisms of compact Klein Surfaces is discussed. By a Klein Surface we mean a Riemann Surface which is orientable or non-orientable. Let X be a Klein Surface together with a dianalytic structure on X. A homeomorphism f : X -> X that is dianalytic will be called an auto morphism of X. Considering the orientable compact Klein Surface without boundary Hurwitz showed that for g ≥ 2, the groups of automorphisms of surfaces of genus g are finite, in fact, do not exceed 84(g-1), and Macbeath has shown that this bound is attained for infinitely many values of g. Compact Klein Surfaces and their automorphisms are still important research area in this century. Automorphism groups of Kleinian Surface can be studied with NEC groups. This is the reason that in chapter 1 of this thesis we worked out the general properties of NEC groups. The second chapter is devoted to the theory of Klein Surfaces. The chapter three is the largest section of the thesis. In this last chapter we studied out the automorphism groups in the case of compact Klein Surfaces with or without boundary. We beliew that we have collected a large number of important theorems and results on this topics.en_US
dc.format.extent65 sayfatr_TR
dc.language.isotrtr_TR
dc.publisherUludağ Üniversitesitr_TR
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectOtomorfizmtr_TR
dc.subjectAutomorphismen_US
dc.subjectKlein yüzeylertr_TR
dc.subjectKlein surfacesen_US
dc.titleKompakt klein yüzeylerin otomorfizmleritr_TR
dc.title.alternativeAutomorphisms of compact klein surfacesen_US
dc.typemasterThesisen_US
dc.relation.publicationcategoryTeztr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen Bilimleri Enstitüsü/Matematik Anabilim Dalı.tr_TR
Appears in Collections:Fen Bilimleri Yüksek Lisans Tezleri / Master Degree

Files in This Item:
File Description SizeFormat 
006574.pdf
  Until 2099-12-31
2.26 MBAdobe PDFView/Open Request a copy


This item is licensed under a Creative Commons License Creative Commons