Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız:
http://hdl.handle.net/11452/10994
Başlık: | Nilüfer çayı su kirliliğinin yapay sinir ağı ile değerlendirilmesi |
Diğer Başlıklar: | Evaluation of Nilüfer Creek water pollution with artificial neural network |
Yazarlar: | Elmacı, Ayşe Bozdemir, Selma Bursa Uludağ Üniversitesi/Fen Bilimleri Enstitüsü/Çevre Mühendisliği Anabilim Dalı. 0000-0002-7142-8544 0000-0002-1762-1140 |
Anahtar kelimeler: | Nilüfer Çayı Nilüfer Creek Su kirliliği Yapay sinir ağı Water pollution Artificial neural network |
Yayın Tarihi: | 24-Eyl-2019 |
Yayıncı: | Bursa Uludağ Üniversitesi |
Atıf: | Bozdemir, S. (2019). Nilüfer Çayı su kirliliğinin yapay sinir ağı ile değerlendirilmesi. Yayınlanmamış yüksek lisans tezi. Bursa Uludağ Üniversitesi Fen Bilimleri Enstitüsü. |
Özet: | Bu çalışmada, Bursa Büyükşehir Belediyesi Bursa Su ve Kanalizasyon İdaresi Genel Müdürlüğü (BUSKİ)’ nden alınan, Nilüfer Çayına ait kirlilik parametreleri (pH, Sıcaklık (◦c), İletkenlik, Nitrat Azotu (NO₃N) (mg/L), Bakır (Cu) (mg/L),Nikel (Ni) (mg/L), Kurşun (Pb) (mg/L), Çinko (Zn) (mg/L), Demir (Fe)(mg/L) ve Mangan (Mn) (mg/L) Yapay Sinir Ağı (YSA) analizine göre değerlendirilmiştir. Bu kapsamda Bursa ‘daki Deliçay deresi, Ayvalı deresi, Hasanağa deresi ve Çayönü deresi ölçüm sonuçları alınmıştır. Neurosolution Yapay Sinir Ağı (YSA) programında Nilüfer Çayındaki kirlilik parametreleri ile pH, sıcaklık, NO₃-N ve Zn kolerasyon yaptırılarak birbirleri ile ilişkilerine bakılmıştır. Yapay Sinir Ağı (YSA) sonucu elde edilen r² sonucu 1 olduğu için karşılaştırılan bağımsız değişkenlerin (ph, sıcaklık, NO₃-N ve Zn) kirlilik parametreleri ile %100’ünü açıklayabileceği belirlenmiş olmaktadır. In the present study, the pollution parameters (pH, Temperature (◦C), Conductivity, Nitrate Nitrojen (NO₃-N) (mg / L), Copper (Cu) (mg / L), Nickel (Ni) (mg / L), Bullet (Pb) (mg / L), Zinc (Zn) (mg / L), İron (Fe) (mg/L), Manganese (Mn) (mg/L) of the Nilufer Stream taken from the Bursa Metropolitan Municipality General Directorate of Water and Sewerage Administration (BUSKI) were evaluated according to Artificial Neural Network (ANN) analysis. In this context, the measurement result of Deliçay stream, Ayvalı stream, Hasanağa stream and Çayönü stream in Bursa. İn the Neurosolution Artificial Neural Network (ANN) program, the pollution parameters in Nilüfer Creek and pH, temperature, NO₃-N and Zn were correlated and their relationships were examined. Since r² result is 1 as a result of Artificial Neural Network (ANN), it is determined that compared independent variables (pH, temperature, NO₃-N and Zn) can explain %100 of pollution parameters. |
URI: | http://hdl.handle.net/11452/10994 |
Koleksiyonlarda Görünür: | Fen Bilimleri Yüksek Lisans Tezleri / Master Degree |
Bu öğenin dosyaları:
Dosya | Açıklama | Boyut | Biçim | |
---|---|---|---|---|
605683.pdf | 1.39 MB | Adobe PDF | Göster/Aç |
Bu öğe kapsamında lisanslı Creative Commons License