Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/21156
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2021-07-07T10:41:40Z-
dc.date.available2021-07-07T10:41:40Z-
dc.date.issued2005-09-
dc.identifier.citationÖzmutlu, H. C. ve Çavdur, F. (2005). "Application of automatic topic identification on Excite Web search engine data logs". Information Processing & Management, 41(5), 1243-1262.en_US
dc.identifier.issn0306-4573-
dc.identifier.urihttps://doi.org/10.1016/j.ipm.2004.04.018-
dc.identifier.urihttp://hdl.handle.net/11452/21156-
dc.description.abstractThe analysis of contextual information in search engine query logs enhances the understanding of Web users' search patterns. Obtaining contextual information on Web search engine logs is a difficult task, since users submit few number of queries, and search multiple topics. Identification of topic changes within a search session is an important branch of search engine user behavior analysis. The purpose of this study is to investigate the properties of a specific topic identification methodology in detail, and to test its validity. The topic identification algorithm's performance becomes doubtful in various cases. These cases are explored and the reasons underlying the inconsistent performance of automatic topic identification are investigated with statistical analysis and experimental design techniques.en_US
dc.language.isoenen_US
dc.publisherElsevier Scien_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSearch engineen_US
dc.subjectDempster-Shafer theoryen_US
dc.subjectTopic identificationen_US
dc.subjectSession identificationen_US
dc.subjectGenetic algorithmen_US
dc.subjectInformation-seekingen_US
dc.subjectContexten_US
dc.subjectComputer scienceen_US
dc.subjectInformation science & library scienceen_US
dc.titleApplication of automatic topic identification on Excite Web search engine data logsen_US
dc.typeArticleen_US
dc.identifier.wos000228698800014tr_TR
dc.identifier.scopus2-s2.0-16244397343tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik-Mimarlık Fakültesi/Endüstri Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0001-8054-5606tr_TR
dc.identifier.startpage1243tr_TR
dc.identifier.endpage1262tr_TR
dc.identifier.volume41tr_TR
dc.identifier.issue5tr_TR
dc.relation.journalInformation Processing & Managementen_US
dc.contributor.buuauthorÖzmutlu, H. Cenk-
dc.contributor.buuauthorÇavdur, Fatih-
dc.contributor.researcheridAAG-9471-2021tr_TR
dc.contributor.researcheridABH-5209-2020tr_TR
dc.identifier.pubmedPubmed numarasıen_US
dc.subject.wosComputer science, information systemsen_US
dc.subject.wosInformation science & library scienceen_US
dc.indexed.wosSCIEen_US
dc.indexed.wosSSCIen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ2en_US
Appears in Collections:Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.