Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız:
http://hdl.handle.net/11452/21156
Başlık: | Application of automatic topic identification on Excite Web search engine data logs |
Yazarlar: | Uludağ Üniversitesi/Mühendislik-Mimarlık Fakültesi/Endüstri Mühendisliği Bölümü. 0000-0001-8054-5606 Özmutlu, H. Cenk Çavdur, Fatih AAG-9471-2021 ABH-5209-2020 |
Anahtar kelimeler: | Search engine Dempster-Shafer theory Topic identification Session identification Genetic algorithm Information-seeking Context Computer science Information science & library science |
Yayın Tarihi: | Eyl-2005 |
Yayıncı: | Elsevier Sci |
Atıf: | Özmutlu, H. C. ve Çavdur, F. (2005). "Application of automatic topic identification on Excite Web search engine data logs". Information Processing & Management, 41(5), 1243-1262. |
Özet: | The analysis of contextual information in search engine query logs enhances the understanding of Web users' search patterns. Obtaining contextual information on Web search engine logs is a difficult task, since users submit few number of queries, and search multiple topics. Identification of topic changes within a search session is an important branch of search engine user behavior analysis. The purpose of this study is to investigate the properties of a specific topic identification methodology in detail, and to test its validity. The topic identification algorithm's performance becomes doubtful in various cases. These cases are explored and the reasons underlying the inconsistent performance of automatic topic identification are investigated with statistical analysis and experimental design techniques. |
URI: | https://doi.org/10.1016/j.ipm.2004.04.018 http://hdl.handle.net/11452/21156 |
ISSN: | 0306-4573 |
Koleksiyonlarda Görünür: | Web of Science |
Bu öğenin dosyaları:
Bu öğeyle ilişkili dosya bulunmamaktadır.
DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.