Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/21326
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2021-07-29T13:04:54Z-
dc.date.available2021-07-29T13:04:54Z-
dc.date.issued2005-
dc.identifier.citationÖzmutlu, S. ve Çavdur, F. (2005). "Neural network applications for automatic new topic identification". Online Information Review, 29(1), 34-53.en_US
dc.identifier.issn1468-4527-
dc.identifier.urihttps://doi.org/10.1108/14684520510583936-
dc.identifier.urihttps://www.emerald.com/insight/content/doi/10.1108/14684520510583936/full/html-
dc.identifier.urihttp://hdl.handle.net/11452/21326-
dc.description.abstractPurpose - This study aims to propose an artificial neural network to identify automatically topic changes in a user session by using the statistical characteristics of queries, such as time intervals and query reformulation patterns. Design/methodology/approach - A sample data log from the Norwegian search engine FAST (currently owned by Overture) is selected to train the neural network and then the neural network is used to identify topic changes in the data log. Findings - A total of 98.4 percent of topic shifts and 86.6 percent of topic continuations were estimated correctly. Originality/value - Content analysis of search engine user queries is an important task, since successful exploitation of the content of queries can result in the design of efficient information retrieval algorithms for search engines, which can offer custom-tailored services to the web user. Identification of topic changes within a user search session is a key issue in the content analysis of search engine user queries.en_US
dc.language.isoentr_TR
dc.publisherEmerald Group Publishing Limiteden_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSearch engineen_US
dc.subjectNeural netsen_US
dc.subjectInformation retrievalen_US
dc.subjectInformation-seekingen_US
dc.subjectWeb queriesen_US
dc.subjectUsersen_US
dc.subjectContexten_US
dc.subjectTrendsen_US
dc.subjectLogsen_US
dc.subjectLifeen_US
dc.subjectComputer scienceen_US
dc.subjectInformation science & library scienceen_US
dc.subjectAlgorithmsen_US
dc.subjectData acquisitionen_US
dc.subjectIdentification (control systems)en_US
dc.subjectInformation retrievalen_US
dc.subjectQuery languagesen_US
dc.subjectSearch enginesen_US
dc.subjectUser interfacesen_US
dc.subjectData logen_US
dc.subjectSearch toolsen_US
dc.subjectTopic identificationen_US
dc.subjectUser queriesen_US
dc.subjectNeural networksen_US
dc.titleNeural network applications for automatic new topic identificationen_US
dc.typeArticleen_US
dc.identifier.wos000228460500003tr_TR
dc.identifier.scopus2-s2.0-18844372333tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0001-8054-5606tr_TR
dc.identifier.startpage34tr_TR
dc.identifier.endpage53tr_TR
dc.identifier.volume29tr_TR
dc.identifier.issue1tr_TR
dc.relation.journalOnline Information Reviewen_US
dc.contributor.buuauthorÖzmutlu, Seda-
dc.contributor.buuauthorÇavdur, Fatih-
dc.contributor.researcheridAAH-4480-2021tr_TR
dc.contributor.researcheridAAG-9471-2021tr_TR
dc.subject.wosComputer science, information systemsen_US
dc.subject.wosInformation science & library scienceen_US
dc.indexed.wosSCIEen_US
dc.indexed.wosSSCIen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ3en_US
dc.subject.scopusQuery Reformulation; Image Indexing; Digital Librariesen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.