Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız:
http://hdl.handle.net/11452/21326
Başlık: | Neural network applications for automatic new topic identification |
Yazarlar: | Uludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü. 0000-0001-8054-5606 Özmutlu, Seda Çavdur, Fatih AAH-4480-2021 AAG-9471-2021 |
Anahtar kelimeler: | Search engine Neural nets Information retrieval Information-seeking Web queries Users Context Trends Logs Life Computer science Information science & library science Algorithms Data acquisition Identification (control systems) Information retrieval Query languages Search engines User interfaces Data log Search tools Topic identification User queries Neural networks |
Yayın Tarihi: | 2005 |
Yayıncı: | Emerald Group Publishing Limited |
Atıf: | Özmutlu, S. ve Çavdur, F. (2005). "Neural network applications for automatic new topic identification". Online Information Review, 29(1), 34-53. |
Özet: | Purpose - This study aims to propose an artificial neural network to identify automatically topic changes in a user session by using the statistical characteristics of queries, such as time intervals and query reformulation patterns. Design/methodology/approach - A sample data log from the Norwegian search engine FAST (currently owned by Overture) is selected to train the neural network and then the neural network is used to identify topic changes in the data log. Findings - A total of 98.4 percent of topic shifts and 86.6 percent of topic continuations were estimated correctly. Originality/value - Content analysis of search engine user queries is an important task, since successful exploitation of the content of queries can result in the design of efficient information retrieval algorithms for search engines, which can offer custom-tailored services to the web user. Identification of topic changes within a user search session is a key issue in the content analysis of search engine user queries. |
URI: | https://doi.org/10.1108/14684520510583936 https://www.emerald.com/insight/content/doi/10.1108/14684520510583936/full/html http://hdl.handle.net/11452/21326 |
ISSN: | 1468-4527 |
Koleksiyonlarda Görünür: | Scopus Web of Science |
Bu öğenin dosyaları:
Bu öğeyle ilişkili dosya bulunmamaktadır.
DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.