Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://hdl.handle.net/11452/21326
Başlık: Neural network applications for automatic new topic identification
Yazarlar: Uludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü.
0000-0001-8054-5606
Özmutlu, Seda
Çavdur, Fatih
AAH-4480-2021
AAG-9471-2021
Anahtar kelimeler: Search engine
Neural nets
Information retrieval
Information-seeking
Web queries
Users
Context
Trends
Logs
Life
Computer science
Information science & library science
Algorithms
Data acquisition
Identification (control systems)
Information retrieval
Query languages
Search engines
User interfaces
Data log
Search tools
Topic identification
User queries
Neural networks
Yayın Tarihi: 2005
Yayıncı: Emerald Group Publishing Limited
Atıf: Özmutlu, S. ve Çavdur, F. (2005). "Neural network applications for automatic new topic identification". Online Information Review, 29(1), 34-53.
Özet: Purpose - This study aims to propose an artificial neural network to identify automatically topic changes in a user session by using the statistical characteristics of queries, such as time intervals and query reformulation patterns. Design/methodology/approach - A sample data log from the Norwegian search engine FAST (currently owned by Overture) is selected to train the neural network and then the neural network is used to identify topic changes in the data log. Findings - A total of 98.4 percent of topic shifts and 86.6 percent of topic continuations were estimated correctly. Originality/value - Content analysis of search engine user queries is an important task, since successful exploitation of the content of queries can result in the design of efficient information retrieval algorithms for search engines, which can offer custom-tailored services to the web user. Identification of topic changes within a user search session is a key issue in the content analysis of search engine user queries.
URI: https://doi.org/10.1108/14684520510583936
https://www.emerald.com/insight/content/doi/10.1108/14684520510583936/full/html
http://hdl.handle.net/11452/21326
ISSN: 1468-4527
Koleksiyonlarda Görünür:Scopus
Web of Science

Bu öğenin dosyaları:
Bu öğeyle ilişkili dosya bulunmamaktadır.


DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.