Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/21716
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2021-09-07T05:49:02Z | - |
dc.date.available | 2021-09-07T05:49:02Z | - |
dc.date.issued | 2006-11-15 | - |
dc.identifier.citation | Karen, İ. vd. (2006). ''Hybrid approach for genetic algorithm and Taguchi's method based design optimization in the automotive industry''. International Journal of Production Research, 44(22), 4897-4914. | en_US |
dc.identifier.issn | 0020-7543 | - |
dc.identifier.issn | 1366-588X | - |
dc.identifier.uri | https://doi.org/10.1080/00207540600619932 | - |
dc.identifier.uri | https://www.tandfonline.com/doi/full/10.1080/00207540600619932 | - |
dc.identifier.uri | http://hdl.handle.net/11452/21716 | - |
dc.description.abstract | Although genetic algorithm and multi-objective optimization techniques are widely used to solve problems in the design and manufacturing area, further improvements are required to develop more efficient techniques regarding multi-objective optimization problems. The main goal of the present research is to further develop and strengthen the genetic algorithm based multi-objective optimization approach to generate real-world design solutions in the automotive industry. In this research, a new hybrid approach based on Taguchi's method and a genetic algorithm is presented to achieve better Pareto-optimal set solutions for multi-objective design optimization problems. In addition, fatigue damage and life are also considered to evaluate the results of the design optimization process. The validity and efficiency of the proposed approach are evaluated and illustrated with test problems taken from the literature. It is then applied to a vehicle component taken from the automotive industry. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Taylor & Francis | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Operations research & management science | en_US |
dc.subject | Engineering | en_US |
dc.subject | Taguchi's method | en_US |
dc.subject | Multi-objective optimization | en_US |
dc.subject | Genetic algorithm | en_US |
dc.subject | Performance | en_US |
dc.subject | Neural-network | en_US |
dc.subject | Topology design | en_US |
dc.subject | Parameter design | en_US |
dc.subject | Robust design | en_US |
dc.subject | Shape optimization | en_US |
dc.subject | Industrial research | en_US |
dc.subject | Optimal systems | en_US |
dc.subject | Optimization | en_US |
dc.subject | Pareto principle | en_US |
dc.subject | Problem solving | en_US |
dc.subject | Multi objective optimization | en_US |
dc.subject | Pareto optimal set solutions | en_US |
dc.subject | Automotive industry | en_US |
dc.title | Hybrid approach for genetic algorithm and Taguchi's method based design optimization in the automotive industry | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000241266000012 | tr_TR |
dc.identifier.scopus | 2-s2.0-33749576595 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü. | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü. | tr_TR |
dc.contributor.orcid | 0000-0002-8297-0777 | tr_TR |
dc.contributor.orcid | 0000-0003-1790-6987 | tr_TR |
dc.identifier.startpage | 4897 | tr_TR |
dc.identifier.endpage | 4914 | tr_TR |
dc.identifier.volume | 44 | tr_TR |
dc.identifier.issue | 22 | tr_TR |
dc.relation.journal | International Journal of Production Research | en_US |
dc.contributor.buuauthor | Karen, İdris | - |
dc.contributor.buuauthor | Yıldız, Ali Rıza | - |
dc.contributor.buuauthor | Kaya, Necmettin | - |
dc.contributor.buuauthor | Öztürk, Nursel | - |
dc.contributor.buuauthor | Öztürk, Ferruh | - |
dc.contributor.researcherid | AAG-9923-2021 | tr_TR |
dc.contributor.researcherid | R-4929-2018 | tr_TR |
dc.contributor.researcherid | F-7426-2011 | tr_TR |
dc.contributor.researcherid | AAG-9336-2021 | tr_TR |
dc.subject.wos | Engineering, industrial | en_US |
dc.subject.wos | Engineering, manufacturing | en_US |
dc.subject.wos | Operations research & management science | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q2 | en_US |
dc.contributor.scopusid | 14831337300 | tr_TR |
dc.contributor.scopusid | 7102365439 | tr_TR |
dc.contributor.scopusid | 7005013334 | tr_TR |
dc.contributor.scopusid | 7005688805 | tr_TR |
dc.contributor.scopusid | 56271685800 | tr_TR |
dc.subject.scopus | Robust Parameter Design; Multiple Responses; Desirability Function | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.