Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/21716
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2021-09-07T05:49:02Z-
dc.date.available2021-09-07T05:49:02Z-
dc.date.issued2006-11-15-
dc.identifier.citationKaren, İ. vd. (2006). ''Hybrid approach for genetic algorithm and Taguchi's method based design optimization in the automotive industry''. International Journal of Production Research, 44(22), 4897-4914.en_US
dc.identifier.issn0020-7543-
dc.identifier.issn1366-588X-
dc.identifier.urihttps://doi.org/10.1080/00207540600619932-
dc.identifier.urihttps://www.tandfonline.com/doi/full/10.1080/00207540600619932-
dc.identifier.urihttp://hdl.handle.net/11452/21716-
dc.description.abstractAlthough genetic algorithm and multi-objective optimization techniques are widely used to solve problems in the design and manufacturing area, further improvements are required to develop more efficient techniques regarding multi-objective optimization problems. The main goal of the present research is to further develop and strengthen the genetic algorithm based multi-objective optimization approach to generate real-world design solutions in the automotive industry. In this research, a new hybrid approach based on Taguchi's method and a genetic algorithm is presented to achieve better Pareto-optimal set solutions for multi-objective design optimization problems. In addition, fatigue damage and life are also considered to evaluate the results of the design optimization process. The validity and efficiency of the proposed approach are evaluated and illustrated with test problems taken from the literature. It is then applied to a vehicle component taken from the automotive industry.en_US
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectOperations research & management scienceen_US
dc.subjectEngineeringen_US
dc.subjectTaguchi's methoden_US
dc.subjectMulti-objective optimizationen_US
dc.subjectGenetic algorithmen_US
dc.subjectPerformanceen_US
dc.subjectNeural-networken_US
dc.subjectTopology designen_US
dc.subjectParameter designen_US
dc.subjectRobust designen_US
dc.subjectShape optimizationen_US
dc.subjectIndustrial researchen_US
dc.subjectOptimal systemsen_US
dc.subjectOptimizationen_US
dc.subjectPareto principleen_US
dc.subjectProblem solvingen_US
dc.subjectMulti objective optimizationen_US
dc.subjectPareto optimal set solutionsen_US
dc.subjectAutomotive industryen_US
dc.titleHybrid approach for genetic algorithm and Taguchi's method based design optimization in the automotive industryen_US
dc.typeArticleen_US
dc.identifier.wos000241266000012tr_TR
dc.identifier.scopus2-s2.0-33749576595tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü.tr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0002-8297-0777tr_TR
dc.contributor.orcid0000-0003-1790-6987tr_TR
dc.identifier.startpage4897tr_TR
dc.identifier.endpage4914tr_TR
dc.identifier.volume44tr_TR
dc.identifier.issue22tr_TR
dc.relation.journalInternational Journal of Production Researchen_US
dc.contributor.buuauthorKaren, İdris-
dc.contributor.buuauthorYıldız, Ali Rıza-
dc.contributor.buuauthorKaya, Necmettin-
dc.contributor.buuauthorÖztürk, Nursel-
dc.contributor.buuauthorÖztürk, Ferruh-
dc.contributor.researcheridAAG-9923-2021tr_TR
dc.contributor.researcheridR-4929-2018tr_TR
dc.contributor.researcheridF-7426-2011tr_TR
dc.contributor.researcheridAAG-9336-2021tr_TR
dc.subject.wosEngineering, industrialen_US
dc.subject.wosEngineering, manufacturingen_US
dc.subject.wosOperations research & management scienceen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ2en_US
dc.contributor.scopusid14831337300tr_TR
dc.contributor.scopusid7102365439tr_TR
dc.contributor.scopusid7005013334tr_TR
dc.contributor.scopusid7005688805tr_TR
dc.contributor.scopusid56271685800tr_TR
dc.subject.scopusRobust Parameter Design; Multiple Responses; Desirability Functionen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.